IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v170y2012i1p92-101.html
   My bibliography  Save this article

Regression towards the mode

Author

Listed:
  • Kemp, Gordon C.R.
  • Santos Silva, J.M.C.

Abstract

We propose a semi-parametric mode regression estimator for the case in which the dependent variable has a continuous conditional density with a well-defined global mode. The estimator is semi-parametric in that the conditional mode is specified as a parametric function, but only mild assumptions are made about the nature of the conditional density of interest. We show that the proposed estimator is consistent and has a tractable asymptotic distribution.

Suggested Citation

  • Kemp, Gordon C.R. & Santos Silva, J.M.C., 2012. "Regression towards the mode," Journal of Econometrics, Elsevier, vol. 170(1), pages 92-101.
  • Handle: RePEc:eee:econom:v:170:y:2012:i:1:p:92-101
    DOI: 10.1016/j.jeconom.2012.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407612000735
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Seo, Myung Hwan & Linton, Oliver, 2007. "A smoothed least squares estimator for threshold regression models," Journal of Econometrics, Elsevier, vol. 141(2), pages 704-735, December.
    2. A. Quintela-Del-Río & Ph. Vieu, 1997. "A nonparametric conditional mode estimate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 8(3), pages 253-266, September.
    3. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    4. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    5. Terence C. Mills, 2009. "Forecasting obesity trends in England," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 107-117.
    6. Chou, Shin-Yi & Grossman, Michael & Saffer, Henry, 2004. "An economic analysis of adult obesity: results from the Behavioral Risk Factor Surveillance System," Journal of Health Economics, Elsevier, vol. 23(3), pages 565-587, May.
    7. Kemp, Gordon C.R. & Santos Silva, J.M.C., 2012. "Regression towards the mode," Journal of Econometrics, Elsevier, vol. 170(1), pages 92-101.
    8. Jonathan R. W. Temple, 1998. "Robustness tests of the augmented Solow model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(4), pages 361-375.
    9. Baldauf, Markus & Santos Silva, J.M.C., 2012. "On the use of robust regression in econometrics," Economics Letters, Elsevier, vol. 114(1), pages 124-127.
    10. Peter Hall & Jeff Racine & Qi Li, 2004. "Cross-Validation and the Estimation of Conditional Probability Densities," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1015-1026, December.
    11. David M. Cutler & Edward L. Glaeser & Jesse M. Shapiro, 2003. "Why Have Americans Become More Obese?," Journal of Economic Perspectives, American Economic Association, vol. 17(3), pages 93-118, Summer.
    12. Chesher, Andrew & Peters, Simon, 1994. "Symmetry, Regression Design, and Sampling Distributions," Econometric Theory, Cambridge University Press, vol. 10(01), pages 116-129, March.
    13. repec:sae:niesru:v:167:y::i:1:p:106-112 is not listed on IDEAS
    14. Pedro S. Martins & Gary Solon & Jonathan Thomas, 2010. "Measuring What Employers Really Do about Entry Wages over the Business Cycle," NBER Working Papers 15767, National Bureau of Economic Research, Inc.
    15. Jonathan Temple, 1999. "The New Growth Evidence," Journal of Economic Literature, American Economic Association, vol. 37(1), pages 112-156, March.
    16. Lee, Myoung-jae, 1989. "Mode regression," Journal of Econometrics, Elsevier, vol. 42(3), pages 337-349, November.
    17. Lee, Myoung-jae, 1993. "Quadratic mode regression," Journal of Econometrics, Elsevier, vol. 57(1-3), pages 1-19.
    18. Ferraty, Frederic & Quintela-del-Río, Alejandro & Vieu, Philippe, 2012. "Specification Test For Conditional Distribution With Functional Data," Econometric Theory, Cambridge University Press, vol. 28(02), pages 363-386, April.
    19. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    20. Hansen, Bruce E., 1996. "Stochastic Equicontinuity for Unbounded Dependent Heterogeneous Arrays," Econometric Theory, Cambridge University Press, vol. 12(02), pages 347-359, June.
    21. John Cawley, 2004. "The Impact of Obesity on Wages," Journal of Human Resources, University of Wisconsin Press, vol. 39(2).
    22. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    23. M'hamed Ezzahrioui & Elias Ould Saïd, 2010. "Some asymptotic results of a non-parametric conditional mode estimator for functional time-series data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(2), pages 171-201.
    24. Ana Rute Cardoso & Pedro Portugal, 2005. "Contractual Wages and the Wage Cushion under Different Bargaining Settings," Journal of Labor Economics, University of Chicago Press, vol. 23(4), pages 875-902, October.
    25. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kemp, Gordon C.R. & Santos Silva, J.M.C., 2012. "Regression towards the mode," Journal of Econometrics, Elsevier, vol. 170(1), pages 92-101.
    2. Kemp, GCR & Parente, PMDC & Santos Silva, JMC, 2015. "Dynamic Vector Mode Regression," Economics Discussion Papers 13793, University of Essex, Department of Economics.
    3. Yen-Chi Chen, 2017. "Modal Regression using Kernel Density Estimation: a Review," Papers 1710.07004, arXiv.org, revised Dec 2017.
    4. Baldauf, Markus & Santos Silva, J.M.C., 2012. "On the use of robust regression in econometrics," Economics Letters, Elsevier, vol. 114(1), pages 124-127.
    5. Lv, Zhike & Zhu, Huiming & Yu, Keming, 2014. "Robust variable selection for nonlinear models with diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 90-97.
    6. Hyun Kim & Yong-seong Kim & Myoung-jae Lee, 2012. "Treatment effect analysis of early reemployment bonus program: panel MLE and mode-based semiparametric estimator for interval truncation," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 11(3), pages 189-209, December.
    7. Weixin Yao & Longhai Li, 2014. "Acknowledgement of Priority," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1195-1195, December.
    8. Ho, Chi-san & Damien, Paul & Walker, Stephen, 2017. "Bayesian mode regression using mixtures of triangular densities," Journal of Econometrics, Elsevier, vol. 197(2), pages 273-283.

    More about this item

    Keywords

    Conditional mode; Density estimation; Normal kernel; Robust regression;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:170:y:2012:i:1:p:92-101. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.