Optimal subsampling for modal regression in massive data
Author
Abstract
Suggested Citation
DOI: 10.1007/s00184-023-00916-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yujing Shao & Lei Wang, 2022. "Optimal subsampling for composite quantile regression model in massive data," Statistical Papers, Springer, vol. 63(4), pages 1139-1161, August.
- Weixin Yao & Bruce Lindsay & Runze Li, 2012. "Local modal regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 647-663.
- Wang, Kangning & Li, Shaomin, 2021. "Robust distributed modal regression for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Kemp, Gordon C.R. & Santos Silva, J.M.C., 2012.
"Regression towards the mode,"
Journal of Econometrics, Elsevier, vol. 170(1), pages 92-101.
- Kemp, GCR & Santos Silva, JMC, 2010. "Regression towards the mode," Economics Discussion Papers 5757, University of Essex, Department of Economics.
- Weixin Yao & Longhai Li, 2014. "A New Regression Model: Modal Linear Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 656-671, September.
- HaiYing Wang & Min Yang & John Stufken, 2019. "Information-Based Optimal Subdata Selection for Big Data Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 393-405, January.
- Yingzhen Chen & Xuejun Ma & Jingke Zhou, 2018. "Variable selection for mode regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(6), pages 1077-1084, April.
- Xiaohui Yuan & Yong Li & Xiaogang Dong & Tianqing Liu, 2022. "Optimal subsampling for composite quantile regression in big data," Statistical Papers, Springer, vol. 63(5), pages 1649-1676, October.
- Tianzhen Wang & Haixiang Zhang, 2022. "Optimal subsampling for multiplicative regression with massive data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(4), pages 418-449, November.
- Lee, JooChul & Wang, HaiYing & Schifano, Elizabeth D., 2020. "Online updating method to correct for measurement error in big data streams," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
- Zhang, Haixiang & Wang, HaiYing, 2021. "Distributed subdata selection for big data via sampling-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
- Jun Yu & HaiYing Wang & Mingyao Ai & Huiming Zhang, 2022. "Optimal Distributed Subsampling for Maximum Quasi-Likelihood Estimators With Massive Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 265-276, January.
- Yang, Hu & Yang, Jing, 2014. "A robust and efficient estimation and variable selection method for partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 227-242.
- Yaqiong Yao & HaiYing Wang, 2019. "Optimal subsampling for softmax regression," Statistical Papers, Springer, vol. 60(2), pages 585-599, April.
- Weihua Zhao & Riquan Zhang & Yukun Liu & Jicai Liu, 2015. "Empirical likelihood based modal regression," Statistical Papers, Springer, vol. 56(2), pages 411-430, May.
- Shi, Chengchun & Lu, Wenbin & Song, Rui, 2018. "A massive data framework for M-estimators with cubic-rate," LSE Research Online Documents on Economics 102111, London School of Economics and Political Science, LSE Library.
- Shih, Jia-Han & Emura, Takeshi, 2021. "On the copula correlation ratio and its generalization," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
- Haiying Wang & Yanyuan Ma, 2021. "Optimal subsampling for quantile regression in big data," Biometrika, Biometrika Trust, vol. 108(1), pages 99-112.
- Chengchun Shi & Wenbin Lu & Rui Song, 2018. "A Massive Data Framework for M-Estimators with Cubic-Rate," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1698-1709, October.
- HaiYing Wang & Rong Zhu & Ping Ma, 2018. "Optimal Subsampling for Large Sample Logistic Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 829-844, April.
- Lulu Zuo & Haixiang Zhang & HaiYing Wang & Liuquan Sun, 2021. "Optimal subsample selection for massive logistic regression with distributed data," Computational Statistics, Springer, vol. 36(4), pages 2535-2562, December.
- Yishu Xue & HaiYing Wang & Jun Yan & Elizabeth D. Schifano, 2020. "An online updating approach for testing the proportional hazards assumption with streams of survival data," Biometrics, The International Biometric Society, vol. 76(1), pages 171-182, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Min Ren & Shengli Zhao & Mingqiu Wang & Xinbei Zhu, 2024. "Robust optimal subsampling based on weighted asymmetric least squares," Statistical Papers, Springer, vol. 65(4), pages 2221-2251, June.
- Xing Li & Yujing Shao & Lei Wang, 2024. "Optimal subsampling for $$L_p$$ L p -quantile regression via decorrelated score," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(4), pages 1084-1104, December.
- Tianzhen Wang & Haixiang Zhang, 2022. "Optimal subsampling for multiplicative regression with massive data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(4), pages 418-449, November.
- Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
- Ziyang Wang & HaiYing Wang & Nalini Ravishanker, 2023. "Subsampling in Longitudinal Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-29, March.
- Amalan Mahendran & Helen Thompson & James M. McGree, 2023. "A model robust subsampling approach for Generalised Linear Models in big data settings," Statistical Papers, Springer, vol. 64(4), pages 1137-1157, August.
- Deng, Jiayi & Huang, Danyang & Ding, Yi & Zhu, Yingqiu & Jing, Bingyi & Zhang, Bo, 2024. "Subsampling spectral clustering for stochastic block models in large-scale networks," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
- Zhang, Haixiang & Wang, HaiYing, 2021. "Distributed subdata selection for big data via sampling-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
- Qian Yan & Hanyu Li & Chengmei Niu, 2023. "Optimal subsampling for functional quantile regression," Statistical Papers, Springer, vol. 64(6), pages 1943-1968, December.
- Xiaohui Yuan & Yong Li & Xiaogang Dong & Tianqing Liu, 2022. "Optimal subsampling for composite quantile regression in big data," Statistical Papers, Springer, vol. 63(5), pages 1649-1676, October.
- Hanji He & Jianfeng He & Liwei Zhang, 2025. "Imbalanced data sampling design based on grid boundary domain for big data," Computational Statistics, Springer, vol. 40(1), pages 27-64, January.
- Huy N. Chau & J. Lars Kirkby & Dang H. Nguyen & Duy Nguyen & Nhu N. Nguyen & Thai Nguyen, 2024. "On the Inversion‐Free Newton's Method and Its Applications," International Statistical Review, International Statistical Institute, vol. 92(2), pages 284-321, August.
- Lianqiang Yang & Wanli Yuan & Shijie Wang, 2025. "Modal regression models based on B-splines," Computational Statistics, Springer, vol. 40(1), pages 225-248, January.
- Yuxin Sun & Wenjun Liu & Ye Tian, 2024. "Projection-Uniform Subsampling Methods for Big Data," Mathematics, MDPI, vol. 12(19), pages 1-16, September.
- Lulu Zuo & Haixiang Zhang & HaiYing Wang & Liuquan Sun, 2021. "Optimal subsample selection for massive logistic regression with distributed data," Computational Statistics, Springer, vol. 36(4), pages 2535-2562, December.
- Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Su, Miaomiao & Wang, Ruoyu & Wang, Qihua, 2022. "A two-stage optimal subsampling estimation for missing data problems with large-scale data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Tianzhen Wang & Haixiang Zhang & Liuquan Sun, 2024. "Renewable learning for multiplicative regression with streaming datasets," Computational Statistics, Springer, vol. 39(3), pages 1559-1586, May.
- Jun Yu & HaiYing Wang, 2022. "Subdata selection algorithm for linear model discrimination," Statistical Papers, Springer, vol. 63(6), pages 1883-1906, December.
- Duarte, Belmiro P.M. & Atkinson, Anthony C. & Oliveira, Nuno M.C., 2024. "Using hierarchical information-theoretic criteria to optimize subsampling of extensive datasets," LSE Research Online Documents on Economics 121641, London School of Economics and Political Science, LSE Library.
More about this item
Keywords
Modal regression; Massive data; Optimal subsampling strategies; MEM algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:87:y:2024:i:4:d:10.1007_s00184-023-00916-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.