IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v76y2022i4p418-449.html
   My bibliography  Save this article

Optimal subsampling for multiplicative regression with massive data

Author

Listed:
  • Tianzhen Wang
  • Haixiang Zhang

Abstract

Faced with massive data, subsampling is a popular way to downsize the data volume for reducing computational burden. The key idea of subsampling is to perform statistical analysis on a representative subsample drawn from the full data. It provides a practical solution to extracting useful information from big data. In this article, we develop an efficient subsampling method for large‐scale multiplicative regression model, which can largely reduce the computational burden due to massive data. Under some regularity conditions, we establish consistency and asymptotic normality of the subsample‐based estimator, and derive the optimal subsampling probabilities according to the L‐optimality criterion. A two‐step algorithm is developed to approximate the optimal subsampling procedure. Meanwhile, the convergence rate and asymptotic normality of the two‐step subsample estimator are established. Numerical studies and two real data applications are carried out to evaluate the performance of our subsampling method.

Suggested Citation

  • Tianzhen Wang & Haixiang Zhang, 2022. "Optimal subsampling for multiplicative regression with massive data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(4), pages 418-449, November.
  • Handle: RePEc:bla:stanee:v:76:y:2022:i:4:p:418-449
    DOI: 10.1111/stan.12266
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12266
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhouping Li & Yuanyuan Lin & Guoliang Zhou & Wang Zhou, 2014. "Empirical likelihood for least absolute relative error regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 86-99, March.
    2. Lan Luo & Peter X.‐K. Song, 2020. "Renewable estimation and incremental inference in generalized linear models with streaming data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(1), pages 69-97, February.
    3. Haiying Wang & Yanyuan Ma, 2021. "Optimal subsampling for quantile regression in big data," Biometrika, Biometrika Trust, vol. 108(1), pages 99-112.
    4. HaiYing Wang & Min Yang & John Stufken, 2019. "Information-Based Optimal Subdata Selection for Big Data Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 393-405, January.
    5. Chen, Kani & Guo, Shaojun & Lin, Yuanyuan & Ying, Zhiliang, 2010. "Least Absolute Relative Error Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1104-1112.
    6. HaiYing Wang & Rong Zhu & Ping Ma, 2018. "Optimal Subsampling for Large Sample Logistic Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 829-844, April.
    7. Lulu Zuo & Haixiang Zhang & HaiYing Wang & Liuquan Sun, 2021. "Optimal subsample selection for massive logistic regression with distributed data," Computational Statistics, Springer, vol. 36(4), pages 2535-2562, December.
    8. Xia, Xiaochao & Liu, Zhi & Yang, Hu, 2016. "Regularized estimation for the least absolute relative error models with a diverging number of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 104-119.
    9. Chen, Kani & Lin, Yuanyuan & Wang, Zhanfeng & Ying, Zhiliang, 2016. "Least product relative error estimation," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 91-98.
    10. Zhang, Haixiang & Wang, HaiYing, 2021. "Distributed subdata selection for big data via sampling-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Chao & Lei Huang & Xuejun Ma & Jiajun Sun, 2024. "Optimal subsampling for modal regression in massive data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(4), pages 379-409, May.
    2. Tianzhen Wang & Haixiang Zhang & Liuquan Sun, 2024. "Renewable learning for multiplicative regression with streaming datasets," Computational Statistics, Springer, vol. 39(3), pages 1559-1586, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Chao & Lei Huang & Xuejun Ma & Jiajun Sun, 2024. "Optimal subsampling for modal regression in massive data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(4), pages 379-409, May.
    2. Tianzhen Wang & Haixiang Zhang & Liuquan Sun, 2024. "Renewable learning for multiplicative regression with streaming datasets," Computational Statistics, Springer, vol. 39(3), pages 1559-1586, May.
    3. Huilan Liu & Xiawei Zhang & Huaiqing Hu & Junjie Ma, 2024. "Analysis of the positive response data with the varying coefficient partially nonlinear multiplicative model," Statistical Papers, Springer, vol. 65(5), pages 3063-3092, July.
    4. Hanji He & Jianfeng He & Liwei Zhang, 2025. "Imbalanced data sampling design based on grid boundary domain for big data," Computational Statistics, Springer, vol. 40(1), pages 27-64, January.
    5. Min Ren & Shengli Zhao & Mingqiu Wang & Xinbei Zhu, 2024. "Robust optimal subsampling based on weighted asymmetric least squares," Statistical Papers, Springer, vol. 65(4), pages 2221-2251, June.
    6. Yinjun Chen & Hao Ming & Hu Yang, 2024. "Efficient variable selection for high-dimensional multiplicative models: a novel LPRE-based approach," Statistical Papers, Springer, vol. 65(6), pages 3713-3737, August.
    7. Jun Yu & Jiaqi Liu & HaiYing Wang, 2023. "Information-based optimal subdata selection for non-linear models," Statistical Papers, Springer, vol. 64(4), pages 1069-1093, August.
    8. Shanshan Wang & Wei Cao & Xiaoxue Hu & Hanyu Zhong & Weixi Sun, 2025. "A Selective Overview of Quantile Regression for Large-Scale Data," Mathematics, MDPI, vol. 13(5), pages 1-30, March.
    9. Ziyang Wang & HaiYing Wang & Nalini Ravishanker, 2023. "Subsampling in Longitudinal Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-29, March.
    10. Deng, Jiayi & Huang, Danyang & Ding, Yi & Zhu, Yingqiu & Jing, Bingyi & Zhang, Bo, 2024. "Subsampling spectral clustering for stochastic block models in large-scale networks," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    11. Hector, Emily C. & Luo, Lan & Song, Peter X.-K., 2023. "Parallel-and-stream accelerator for computationally fast supervised learning," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    12. Baolin Chen & Shanshan Song & Yong Zhou, 2024. "Estimation and testing of expectile regression with efficient subsampling for massive data," Statistical Papers, Springer, vol. 65(9), pages 5593-5613, December.
    13. Xiaohui Yuan & Yong Li & Xiaogang Dong & Tianqing Liu, 2022. "Optimal subsampling for composite quantile regression in big data," Statistical Papers, Springer, vol. 63(5), pages 1649-1676, October.
    14. Zhaolei Liu, 2025. "Optimal Subsampling for Upper Expectation Parametric Regression," Mathematics, MDPI, vol. 13(7), pages 1-24, March.
    15. Huy N. Chau & J. Lars Kirkby & Dang H. Nguyen & Duy Nguyen & Nhu N. Nguyen & Thai Nguyen, 2024. "On the Inversion‐Free Newton's Method and Its Applications," International Statistical Review, International Statistical Institute, vol. 92(2), pages 284-321, August.
    16. Zhanfeng Wang & Zhuojian Chen & Zimu Chen, 2018. "H-relative error estimation for multiplicative regression model with random effect," Computational Statistics, Springer, vol. 33(2), pages 623-638, June.
    17. Feifei Wang & Danyang Huang & Tianchen Gao & Shuyuan Wu & Hansheng Wang, 2022. "Sequential one‐step estimator by sub‐sampling for customer churn analysis with massive data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1753-1786, November.
    18. Hojun You & Kyubaek Yoon & Wei-Ying Wu & Jongeun Choi & Chae Young Lim, 2024. "Regularized nonlinear regression with dependent errors and its application to a biomechanical model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(3), pages 481-510, June.
    19. Zhang, Jun & Feng, Zhenghui & Peng, Heng, 2018. "Estimation and hypothesis test for partial linear multiplicative models," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 87-103.
    20. Su, Miaomiao & Wang, Ruoyu & Wang, Qihua, 2022. "A two-stage optimal subsampling estimation for missing data problems with large-scale data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:76:y:2022:i:4:p:418-449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.