IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v105y2021ics026499932100242x.html
   My bibliography  Save this article

Global sensitivity analysis for optimal climate policies: Finding what truly matters

Author

Listed:
  • Miftakhova, Alena

Abstract

Climate policy decisions rely heavily on the predictions of climate–economic models. These models are known to be sensitive to their initial assumptions and parameterization. Despite the broad literature exploring this sensitivity, universal, well-established practices are still lacking in this field. This paper endorses a holistic, global approach to sensitivity analysis and advocates it as an indispensable routine in climate–economic modeling. An application of a highly-efficient method of global sensitivity analysis to the seemingly simple case of the DICE model provides two fundamental insights. First, only global and comprehensive—as opposed to local or selective—sensitivity analysis can deliver a full and trustworthy picture of the effect of parameters' uncertainty on the model's solution. Second, a comprehensive decomposition of the uncertainty in the model's output is achievable at modest computational costs. Such decomposition is thus desired and potentially attainable for climate–economic models of higher complexity.

Suggested Citation

  • Miftakhova, Alena, 2021. "Global sensitivity analysis for optimal climate policies: Finding what truly matters," Economic Modelling, Elsevier, vol. 105(C).
  • Handle: RePEc:eee:ecmode:v:105:y:2021:i:c:s026499932100242x
    DOI: 10.1016/j.econmod.2021.105653
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S026499932100242X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2021.105653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth Gillingham & William Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly, 2018. "Modeling Uncertainty in Integrated Assessment of Climate Change: A Multimodel Comparison," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(4), pages 791-826.
    2. Canova, Fabio, 1994. "Statistical Inference in Calibrated Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(S), pages 123-144, Suppl. De.
    3. Frederick Ploeg & Armon Rezai, 2019. "Simple Rules for Climate Policy and Integrated Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 77-108, January.
    4. Fidel Gonzalez, 2018. "Pollution Control with Time-Varying Model Mistrust of the Stock Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 541-569, March.
    5. Blatman, Géraud & Sudret, Bruno, 2010. "Efficient computation of global sensitivity indices using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1216-1229.
    6. Aldred, Jonathan, 2013. "Justifying precautionary policies: Incommensurability and uncertainty," Ecological Economics, Elsevier, vol. 96(C), pages 132-140.
    7. Anna Wesselink & Andrew Challinor & James Watson & Keith Beven & Icarus Allen & Helen Hanlon & Ana Lopez & Susanne Lorenz & Friederike Otto & Andy Morse & Cameron Rye & Stephane Saux-Picard & David St, 2015. "Equipped to deal with uncertainty in climate and impacts predictions: lessons from internal peer review," Climatic Change, Springer, vol. 132(1), pages 1-14, September.
    8. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    9. Moritz A. Drupp & Mark C. Freeman & Ben Groom & Frikk Nesje, 2018. "Discounting Disentangled," American Economic Journal: Economic Policy, American Economic Association, vol. 10(4), pages 109-134, November.
    10. Armon Rezai & Frederick Van der Ploeg, 2016. "Intergenerational Inequality Aversion, Growth, and the Role of Damages: Occam's Rule for the Global Carbon Tax," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(2), pages 493-522.
    11. Athanassoglou, Stergios & Xepapadeas, Anastasios, 2012. "Pollution control with uncertain stock dynamics: When, and how, to be precautious," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 304-320.
    12. Minh Ha-Duong & Nicolas Treich, 2004. "Risk Aversion, Intergenerational Equity and Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(2), pages 195-207, June.
    13. Richard Tol, 2002. "Estimates of the Damage Costs of Climate Change, Part II. Dynamic Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 21(2), pages 135-160, February.
    14. Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
    15. Chris W. Hope, 2006. "The marginal impacts of CO 2 , CH 4 and SF 6 emissions," Climate Policy, Taylor & Francis Journals, vol. 6(5), pages 537-544, September.
    16. Delavane Diaz & Frances Moore, 2017. "Quantifying the economic risks of climate change," Nature Climate Change, Nature, vol. 7(11), pages 774-782, November.
    17. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    18. Dietz, Simon & Venmans, Frank, 2019. "Cumulative carbon emissions and economic policy: In search of general principles," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 108-129.
    19. Armon Rezai & Frederick Van der Ploeg, 2016. "Intergenerational Inequality Aversion, Growth, and the Role of Damages: Occam's Rule for the Global Carbon Tax," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(2), pages 493-522.
    20. Minh Ha-Duong & Nicolas Treich, 2004. "Risk Aversion, Intergenerational Equity and Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(2), pages 195-207, June.
    21. Stergios Athanassoglou, 2015. "Multidimensional welfare rankings under weight imprecision: a social choice perspective," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(4), pages 719-744, April.
    22. Mat Collins & Krishna AchutaRao & Karumuri Ashok & Satyendra Bhandari & Ashis K. Mitra & Satya Prakash & Rohit Srivastava & Andrew Turner, 2013. "Observational challenges in evaluating climate models," Nature Climate Change, Nature, vol. 3(11), pages 940-941, November.
    23. Peck, Stephen C. & Teisberg, Thomas J., 1993. "Global warming uncertainties and the value of information: an analysis using CETA," Resource and Energy Economics, Elsevier, vol. 15(1), pages 71-97, March.
    24. David Anthoff & Richard Tol, 2013. "Erratum to: The uncertainty about the social cost of carbon: A decomposition analysis using fund," Climatic Change, Springer, vol. 121(2), pages 413-413, November.
    25. van den Bijgaart, Inge & Gerlagh, Reyer & Liski, Matti, 2016. "A simple formula for the social cost of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 77(C), pages 75-94.
    26. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    27. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    28. Antony Millner & Simon Dietz & Geoffrey Heal, 2013. "Scientific Ambiguity and Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 21-46, May.
    29. Patrick Beissner & Frank Riedel, 2019. "Equilibria Under Knightian Price Uncertainty," Econometrica, Econometric Society, vol. 87(1), pages 37-64, January.
    30. Crost, Benjamin & Traeger, Christian P., 2013. "Optimal climate policy: Uncertainty versus Monte Carlo," Economics Letters, Elsevier, vol. 120(3), pages 552-558.
    31. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    32. Christian Traeger, 2014. "A 4-Stated DICE: Quantitatively Addressing Uncertainty Effects in Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 1-37, September.
    33. Richard Tol, 2002. "Estimates of the Damage Costs of Climate Change. Part 1: Benchmark Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 21(1), pages 47-73, January.
    34. Peterson, Sonja, 2006. "Uncertainty and economic analysis of climate change: a survey of approaches and findings," Open Access Publications from Kiel Institute for the World Economy 3778, Kiel Institute for the World Economy (IfW Kiel).
    35. van den Bijgaart, Inge & Gerlagh, Reyer & Liski, Matti, 2016. "A simple formula for the social cost of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 77(C), pages 75-94.
    36. Shane Frederick & George Loewenstein & Ted O'Donoghue, 2002. "Time Discounting and Time Preference: A Critical Review," Journal of Economic Literature, American Economic Association, vol. 40(2), pages 351-401, June.
    37. Frank Ackerman & Elizabeth Stanton & Ramón Bueno, 2013. "Epstein–Zin Utility in DICE: Is Risk Aversion Irrelevant to Climate Policy?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(1), pages 73-84, September.
    38. David Anthoff & Richard Tol, 2013. "The uncertainty about the social cost of carbon: A decomposition analysis using fund," Climatic Change, Springer, vol. 117(3), pages 515-530, April.
    39. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    40. Nordhaus, William D., 1993. "Rolling the 'DICE': an optimal transition path for controlling greenhouse gases," Resource and Energy Economics, Elsevier, vol. 15(1), pages 27-50, March.
    41. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    42. Canova, Fabio, 1995. "Sensitivity Analysis and Model Evaluation in Simulated Dynamic General Equilibrium Economies," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 36(2), pages 477-501, May.
    43. Leamer, Edward E, 1985. "Sensitivity Analyses Would Help," American Economic Review, American Economic Association, vol. 75(3), pages 308-313, June.
    44. Ortiz, Ramon Arigoni & Golub, Alexander & Lugovoy, Oleg & Markandya, Anil & Wang, James, 2011. "DICER: A tool for analyzing climate policies," Energy Economics, Elsevier, vol. 33(S1), pages 41-49.
    45. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    46. Martin L. Weitzman, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 703-724, September.
    47. Antony Millner & Raphael Calel & David Stainforth & George MacKerron, 2013. "Do probabilistic expert elicitations capture scientists’ uncertainty about climate change?," Climatic Change, Springer, vol. 116(2), pages 427-436, January.
    48. Keller, Klaus & Bolker, Benjamin M. & Bradford, D.F.David F., 2004. "Uncertain climate thresholds and optimal economic growth," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 723-741, July.
    49. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
    50. J. M. Reilly & J. A. Edmonds & R. H. Gardner & A. L. Brenkerf, 1987. "Uncertainty Analysis of the IEA/ORAU CO2 Emissions Model," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-29.
    51. Kiyohiko G. Nishimura & Hiroyuki Ozaki, 2017. "Economics of Pessimism and Optimism," Springer Books, Springer, number 978-4-431-55903-0, November.
    52. Noah Kaufman, 2012. "The bias of integrated assessment models that ignore climate catastrophes," Climatic Change, Springer, vol. 110(3), pages 575-595, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher J. Smith & Alaa Al Khourdajie & Pu Yang & Doris Folini, 2023. "Climate uncertainty impacts on optimal mitigation pathways and social cost of carbon," Papers 2304.08957, arXiv.org, revised Jul 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    2. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    3. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    4. van der Ploeg, Frederick & Rezai, Armon, 2017. "Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 216-222.
    5. Hambel, Christoph & Kraft, Holger & Schwartz, Eduardo, 2021. "The social cost of carbon in a non-cooperative world," Journal of International Economics, Elsevier, vol. 131(C).
    6. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    7. Traeger, Christian, 2021. "ACE - Analytic Climate Economy," CEPR Discussion Papers 15968, C.E.P.R. Discussion Papers.
    8. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.
    9. van den Bijgaart, Inge & Gerlagh, Reyer & Liski, Matti, 2016. "A simple formula for the social cost of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 77(C), pages 75-94.
    10. Moritz A. Drupp & Frikk Nesje & Robert C. Schmidt, 2022. "Pricing Carbon," CESifo Working Paper Series 9608, CESifo.
    11. van den Bijgaart, Inge & Gerlagh, Reyer & Liski, Matti, 2016. "A simple formula for the social cost of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 77(C), pages 75-94.
    12. Cees A. Withagen, 2018. "The Social Cost of Carbon and the Ramsey Rule," CESifo Working Paper Series 7359, CESifo.
    13. Nicolas Taconet & Céline Guivarch & Antonin Pottier, 2021. "Social Cost of Carbon Under Stochastic Tipping Points," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 709-737, April.
    14. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    15. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    16. Zhang, Hong & Jin, Gui & Zhang, Zhengyu, 2021. "Coupling system of carbon emission and social economy: A review," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    17. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    18. Armon Rezai & Frederick Van der Ploeg, 2016. "Intergenerational Inequality Aversion, Growth, and the Role of Damages: Occam's Rule for the Global Carbon Tax," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(2), pages 493-522.
    19. Rick Van der Ploeg & Armon Rezai, 2015. "Intergenerational Inequality Aversion, Growth and the Role of Damages: Occam's rule for the global tax," Economics Series Working Papers OxCarre Research Paper 15, University of Oxford, Department of Economics.
    20. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.

    More about this item

    Keywords

    Climate change; Integrated assessment model; Climate–economic modelling; Global sensitivity analysis; Polynomial chaos expansions; Sobol indices; Climate policy; Uncertainty;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:105:y:2021:i:c:s026499932100242x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.