IDEAS home Printed from
   My bibliography  Save this article

Options to reduce the environmental effects of livestock production – Comparison of two economic models


  • Stehfest, Elke
  • Berg, Maurits van den
  • Woltjer, Geert
  • Msangi, Siwa
  • Westhoek, Henk


Global livestock production accounts for about 80% of global land use, is one of the main drivers of biodiversity loss, and is responsible for about 18% of global greenhouse gas emissions. These impacts are likely to become more pressing as a consequence of rising demands for meat, eggs and dairy products. Theoretically, these impacts could be reduced by making the global food system more efficient or by dietary changes, as recent studies suggest. However, multiple feedbacks exist in the agricultural system, which may reduce the effectiveness of any promising change. Estimation of these effects is highly uncertain and depends on the tools applied. In this study, we used two different economic models (IMPACT and LEITAP), coupled to the integrated assessment model IMAGE, to examine different options to reduce the environmental impact of agriculture: dietary changes (less meat and dairy), increased production efficiency, and reduced food waste. In a detailed model comparison, we assessed the model results on consumption, agricultural production, commodity prices, land-use change and greenhouse gas emissions, and identified feedbacks in the global agricultural system. In both models, all options resulted in a reduction in agricultural land use and greenhouse gas emissions, as well as in agricultural commodity prices. The model results show that for most options less than the theoretical environmental gains would actually be achieved, due to price feedbacks leading to increased consumption and less intensive production. On the other hand, larger than expected effects could occur as a result of reduced European consumption.

Suggested Citation

  • Stehfest, Elke & Berg, Maurits van den & Woltjer, Geert & Msangi, Siwa & Westhoek, Henk, 2013. "Options to reduce the environmental effects of livestock production – Comparison of two economic models," Agricultural Systems, Elsevier, vol. 114(C), pages 38-53.
  • Handle: RePEc:eee:agisys:v:114:y:2013:i:c:p:38-53
    DOI: 10.1016/j.agsy.2012.07.002

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bouwman, A.F. & Van der Hoek, K.W. & Eickhout, B. & Soenario, I., 2005. "Exploring changes in world ruminant production systems," Agricultural Systems, Elsevier, vol. 84(2), pages 121-153, May.
    2. Hertel, Thomas W., 2010. "The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 92639, Agricultural and Applied Economics Association.
    3. Kantor, Linda Scott & Lipton, Kathryn & Manchester, Alden & Oliveira, Victor, 1997. "Estimating and Addressing America's Food Losses," Food Review/ National Food Review, United States Department of Agriculture, Economic Research Service, vol. 20(1), pages 1-11.
    4. Martin Banse & Hans van Meijl & Andrzej Tabeau & Geert Woltjer, 2008. "Will EU biofuel policies affect global agricultural markets?," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 35(2), pages 117-141, June.
    5. Arnold Tukker & Sandra Bausch-Goldbohm & Marieke Verheijden & Arjan de Koning & René Kleijn & Oliver Wolf & Ignacio Pérez Domínguez, 2009. "Environmental Impacts of Diet Changes in the EU," JRC Working Papers JRC50544, Joint Research Centre (Seville site).
    6. Thomas W. Hertel, 2011. "The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?-super- 1," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 259-275.
    7. Conforti, Piero & Londero, Pierluigi, 2001. "Aglink: The Oecd Partial Equilibrium Model," Working Papers 14808, National Institute of Agricultural Economics, Italy - INEA, Osservatorio Sulle Politiche Agricole dell'UE.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Pierer, Magdalena & Winiwarter, Wilfried & Leach, Allison M. & Galloway, James N., 2014. "The nitrogen footprint of food products and general consumption patterns in Austria," Food Policy, Elsevier, vol. 49(P1), pages 128-136.
    2. Allan, Grant & Comerford, David & McGregor, Peter, 2019. "The system-wide impact of healthy eating: Assessing emissions and economic impacts at the regional level," Food Policy, Elsevier, vol. 86(C), pages 1-1.
    3. Zanetti De Lima, C. & Gurgel, A. & Teixeira, E.C., 2018. "Synergies of low-carbon technologies and land-sparing in Brazilian regions," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277091, International Association of Agricultural Economists.
    4. Ebrahim Teimoury & Armin Jabbarzadeh & Mohammadhosein Babaei, 2017. "Integrating strategic and tactical decisions in livestock supply chain using bi-level programming, case study: Iran poultry supply chain," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-24, October.
    5. Cécile M. Godde & Imke J. M. Boer & Erasmus zu Ermgassen & Mario Herrero & Corina E. Middelaar & Adrian Muller & Elin Röös & Christian Schader & Pete Smith & Hannah H. E. Zanten & Tara Garnett, 2020. "Soil carbon sequestration in grazing systems: managing expectations," Climatic Change, Springer, vol. 161(3), pages 385-391, August.
    6. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    7. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip G. Pardey & Jason M. Beddow & Terrance M. Hurley & Timothy K.M. Beatty & Vernon R. Eidman, 2014. "A Bounds Analysis of World Food Futures: Global Agriculture Through to 2050," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(4), pages 571-589, October.
    2. White, Robin R. & Brady, Michael, 2014. "Can consumers’ willingness to pay incentivize adoption of environmental impact reducing technologies in meat animal production?," Food Policy, Elsevier, vol. 49(P1), pages 41-49.
    3. Calum Brown & Dave Murray-Rust & Jasper van Vliet & Shah Jamal Alam & Peter H Verburg & Mark D Rounsevell, 2014. "Experiments in Globalisation, Food Security and Land Use Decision Making," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-24, December.
    4. Mekbib G. Haile & Matthias Kalkuhl & Joachim Braun, 2014. "Inter- and intra-seasonal crop acreage response to international food prices and implications of volatility," Agricultural Economics, International Association of Agricultural Economists, vol. 45(6), pages 693-710, November.
    5. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    6. Thomas W. Hertel & Uris Lantz C. Baldos & Dominique van der Mensbrugghe, 2016. "Predicting Long-Term Food Demand, Cropland Use, and Prices," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 417-441, October.
    7. Ngoma, Hambulo & Angelsen, Arild, 2018. "Can conservation agriculture save tropical forests? The case of minimum tillage in Zambia," Forest Policy and Economics, Elsevier, vol. 97(C), pages 153-162.
    8. Thomas W. Hertel, 2013. "Land, Environment and Climate: Contributing to the Global Public Good," WIDER Working Paper Series wp-2013-107, World Institute for Development Economic Research (UNU-WIDER).
    9. Gerald C. Nelson & Dominique Mensbrugghe & Helal Ahammad & Elodie Blanc & Katherine Calvin & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campen & Martin Lampe & Daniel Ma, 2014. "Agriculture and climate change in global scenarios: why don't the models agree," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 85-101, January.
    10. Alexandre Gohin, 2014. "Assessing the Land Use Changes and Greenhouse Gas Emissions of Biofuels: Elucidating the Crop Yield Effects," Land Economics, University of Wisconsin Press, vol. 90(4), pages 575-586.
    11. Rutten, Martine & Achterbosch, Thom J. & de Boer, Imke J.M. & Cuaresma, Jesus Crespo & Geleijnse, Johanna M. & Havlík, Petr & Heckelei, Thomas & Ingram, John & Leip, Adrian & Marette, Stéphan & van Me, 2018. "Metrics, models and foresight for European sustainable food and nutrition security: The vision of the SUSFANS project," Agricultural Systems, Elsevier, vol. 163(C), pages 45-57.
    12. Stephen Shisanya & Paramu Mafongoya, 2016. "Adaptation to climate change and the impacts on household food security among rural farmers in uMzinyathi District of Kwazulu-Natal, South Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 597-608, June.
    13. Andre Deppermann & Markus Blesl & Ole Boysen & Harald Grethe & David Bruchof, 2016. "Linkages between the energy and agricultural sectors: insights from European Union greenhouse gas mitigation scenarios," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(5), pages 743-759, June.
    14. T. Brunelle & P. Dumas & W. Ben Aoun & Benoit Gabrielle, 2018. "Unravelling Land-Use Change Mechanisms at Global and Regional Scales," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-14, September.
    15. Timothy A. Wise, 2013. "Can We Feed the World in 2050? A Scoping Paper to Assess the Evidence," GDAE Working Papers 13-04, GDAE, Tufts University.
    16. Fukase, Emiko & Martin, Will, 2020. "Economic growth, convergence, and world food demand and supply," World Development, Elsevier, vol. 132(C).
    17. Mwambo, Francis Molua & Fürst, Christine & Nyarko, Benjamin K. & Borgemeister, Christian & Martius, Christopher, 2020. "Maize production and environmental costs: Resource evaluation and strategic land use planning for food security in northern Ghana by means of coupled emergy and data envelopment analysis," Land Use Policy, Elsevier, vol. 95(C).
    18. Hirsch, Cornelius & Krisztin, Tamás & See, Linda, 2020. "Water Resources as Determinants for Foreign Direct Investments in Land - A Gravity Analysis of Foreign Land Acquisitions," Ecological Economics, Elsevier, vol. 170(C).
    19. Keijiro Otsuka & Frank Place, 2014. "Changes in Land Tenure and Agricultural Intensification in Sub-Saharan Africa," WIDER Working Paper Series wp-2014-051, World Institute for Development Economic Research (UNU-WIDER).
    20. Van Meerbeek, Koenraad & Muys, Bart & Hermy, Martin, 2019. "Lignocellulosic biomass for bioenergy beyond intensive cropland and forests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 139-149.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:114:y:2013:i:c:p:38-53. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.