The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
- Chen, Yuanxing & Fang, Kuangnan & Lan, Wei & Tsai, Chih-Ling & Zhang, Qingzhao, 2025. "Community influence analysis in social networks," Computational Statistics & Data Analysis, Elsevier, vol. 202(C).
- Rungmaitree, Pattamon & Boateng, Agyenim & Ahiabor, Frederick & Lu, Qinye, 2022. "Political risk, hedge fund strategies, and returns: Evidence from G7 countries," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
- Ding, Jing & Jiang, Lei & Liu, Xiaohui & Peng, Liang, 2023. "Nonparametric tests for market timing ability using daily mutual fund returns," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
- Heping Xiong & Chao Tang & Jianhui Cao & Haitao Zhang, 2025. "A New Four-factor Model for the Chinese Stock Market," Annals of Economics and Finance, Society for AEF, vol. 26(2), pages 853-890, November.
- Ding, Yi & Li, Yingying & Liu, Guoli & Zheng, Xinghua, 2024. "Stock co-jump networks," Journal of Econometrics, Elsevier, vol. 239(2).
- VICTOR DeMIGUEL & ALBERTO MARTÍN‐UTRERA & RAMAN UPPAL, 2024. "A Multifactor Perspective on Volatility‐Managed Portfolios," Journal of Finance, American Finance Association, vol. 79(6), pages 3859-3891, December.
- Huang, Haitao & Jiang, Lei & Leng, Xuan & Peng, Liang, 2023. "Bootstrap analysis of mutual fund performance," Journal of Econometrics, Elsevier, vol. 235(1), pages 239-255.
- Hoang, Khoa & Huang, Ronghong & Truong, Helen, 2023. "Resurrecting the market factor: A case of data mining across international markets," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
- Sun, Chuanping, 2024. "Factor correlation and the cross section of asset returns: A correlation-robust machine learning approach," Journal of Empirical Finance, Elsevier, vol. 77(C).
- Wang, Jianqiu & Wang, Zhuo & Wu, Ke, 2025. "Forecasting stock market return with anomalies: Evidence from China," International Journal of Forecasting, Elsevier, vol. 41(3), pages 1278-1295.
- Malakhov, Alexey & Riley, Timothy B. & Yan, Qing, 2024. "Do hedge funds bet against beta?," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1507-1525.
- Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Samuel YM Ze‐To, 2022. "Fundamental index aligned and excess market return predictability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 592-614, April.
- Wang, Jianqiu & Wu, Ke & Tong, Guoshi & Chen, Dongxu, 2023. "Nonlinearity in the cross-section of stock returns: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 174-205.
- Cederburg, Scott & O’Doherty, Michael S. & Wang, Feifei & Yan, Xuemin (Sterling), 2020. "On the performance of volatility-managed portfolios," Journal of Financial Economics, Elsevier, vol. 138(1), pages 95-117.
- Jules H van Binsbergen & Xiao Han & Alejandro Lopez-Lira, 2023. "Man versus Machine Learning: The Term Structure of Earnings Expectations and Conditional Biases," The Review of Financial Studies, Society for Financial Studies, vol. 36(6), pages 2361-2396.
- Leippold, Markus & Wang, Qian & Zhou, Wenyu, 2022. "Machine learning in the Chinese stock market," Journal of Financial Economics, Elsevier, vol. 145(2), pages 64-82.
- Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, January.
- Vitor Azevedo & Georg Sebastian Kaiser & Sebastian Mueller, 2023. "Stock market anomalies and machine learning across the globe," Journal of Asset Management, Palgrave Macmillan, vol. 24(5), pages 419-441, September.
- Tobek, Ondrej & Hronec, Martin, 2021. "Does it pay to follow anomalies research? Machine learning approach with international evidence," Journal of Financial Markets, Elsevier, vol. 56(C).
- Zhu, Lin & Jiang, Fuwei & Tang, Guohao & Jin, Fujing, 2024. "From macro to micro: Sparse macroeconomic risks and the cross-section of stock returns," International Review of Financial Analysis, Elsevier, vol. 95(PB).
- Siddhartha Chib & Simon C. Smith, 2024. "Factor Selection and Structural Breaks," Finance and Economics Discussion Series 2024-037, Board of Governors of the Federal Reserve System (U.S.).
- Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
- Ma, Tian & Li, Ganghui & Zhang, Huajing, 2024. "Stock return predictability using economic narrative: Evidence from energy sectors," Journal of Commodity Markets, Elsevier, vol. 35(C).
- Choy, Siu Kai & Lewis, Craig & Tan, Yongxian, 2023. "Can the changes in fundamentals explain the attenuation of anomalies?," Journal of Financial Economics, Elsevier, vol. 149(2), pages 142-160.
- Avramov, D. & Ge, S. & Li, S. & Linton, O. B., 2025. "Dual Industry Effects and Cross-Stock Predictability," Janeway Institute Working Papers 2506, Faculty of Economics, University of Cambridge.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020.
"Dissecting Characteristics Nonparametrically,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2017. "Dissecting Characteristics Nonparametrically," NBER Working Papers 23227, National Bureau of Economic Research, Inc.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber & Michael Weber, 2018. "Dissecting Characteristics Nonparametrically," CESifo Working Paper Series 7187, CESifo.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber & Michael Weber, 2017. "Dissecting Characteristics Nonparametrically," CESifo Working Paper Series 6391, CESifo.
- Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
- Jing Li & Bowei Guo & Xinqi Xie & Kuo-Ping Chang, 2025. "Evaluating Investment Performance: The p-index and Empirical Efficient Frontier," Papers 2510.11074, arXiv.org.
- Calice, Giovanni & Lin, Ming-Tsung, 2021. "Exploring risk premium factors for country equity returns," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 294-322.
- Ma, Tian & Leong, Wen Jun & Jiang, Fuwei, 2023. "A latent factor model for the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Yang, Huan & Cai, Jun & Huang, Lin & Marcus, Alan J., 2024. "Credit market conditions, expected return proxies, and bank stock returns," Global Finance Journal, Elsevier, vol. 62(C).
- Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020.
"Shrinking the cross-section,"
Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
- Serhiy Kozak & Stefan Nagel & Shrihari Santosh, 2017. "Shrinking the Cross Section," NBER Working Papers 24070, National Bureau of Economic Research, Inc.
- Nagel, Stefan & Santosh, Shrihari & Kozak, Serhiy, 2017. "Shrinking the Cross Section," CEPR Discussion Papers 12463, C.E.P.R. Discussion Papers.
- Cho, Thummim, 2018. "Turning alphas into betas: arbitrage and the cross-section of risk," LSE Research Online Documents on Economics 118915, London School of Economics and Political Science, LSE Library.
- Simon, Frederik & Weibels, Sebastian & Zimmermann, Tom, 2025. "Deep parametric portfolio policies," CFR Working Papers 23-01, University of Cologne, Centre for Financial Research (CFR), revised 2025.
- Geertsema, Paul & Lu, Helen, 2020. "The correlation structure of anomaly strategies," Journal of Banking & Finance, Elsevier, vol. 119(C).
- Lin William Cong & Guanhao Feng & Jingyu He & Xin He, 2022.
"Growing the Efficient Frontier on Panel Trees,"
NBER Working Papers
30805, National Bureau of Economic Research, Inc.
- Lin William Cong & Guanhao Feng & Jingyu He & Xin He, 2025. "Growing the Efficient Frontier on Panel Trees," Papers 2501.16730, arXiv.org, revised Feb 2025.
- Lars Heinrich & Martin Zurek, 2019. "Alpha forecasting in factor investing: discriminating between the informational content of firm characteristics," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(3), pages 243-275, September.
- Bang, Jeongseok & Kang, Yeonchan & Ryu, Doojin, 2024. "Potential pricing factors in the Korean market," Finance Research Letters, Elsevier, vol. 67(PB).
- Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023.
"Machine-learning the skill of mutual fund managers,"
Journal of Financial Economics, Elsevier, vol. 150(1), pages 94-138.
- Ron Kaniel & Zihan Lin & Markus Pelger & Stijn Van Nieuwerburgh, 2022. "Machine-Learning the Skill of Mutual Fund Managers," NBER Working Papers 29723, National Bureau of Economic Research, Inc.
- Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023. "Machine-Learning the Skill of Mutual Fund Managers," CEPR Discussion Papers 18129, C.E.P.R. Discussion Papers.
- Penman, Stephen & Zhu, Julie, 2022. "An accounting-based asset pricing model and a fundamental factor," Journal of Accounting and Economics, Elsevier, vol. 73(2).
- Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020.
"Taming the Factor Zoo: A Test of New Factors,"
Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
- Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2019. "Taming the Factor Zoo: A Test of New Factors," NBER Working Papers 25481, National Bureau of Economic Research, Inc.
- Giglio, Stefano & Feng, Guanhao & Xiu, Dacheng, 2020. "Taming the Factor Zoo: A Test of New Factors," CEPR Discussion Papers 14266, C.E.P.R. Discussion Papers.
- Baba-Yara, Fahiz & Boons, Martijn & Tamoni, Andrea, 2024. "Persistent and transitory components of firm characteristics: Implications for asset pricing," Journal of Financial Economics, Elsevier, vol. 154(C).
- Harvey, Campbell R. & Liu, Yan, 2021. "Lucky factors," Journal of Financial Economics, Elsevier, vol. 141(2), pages 413-435.
- He, Shuoyuan & Narayanamoorthy, Ganapathi (Gans), 2020. "Earnings acceleration and stock returns," Journal of Accounting and Economics, Elsevier, vol. 69(1).
- Berggrun, Luis & Cardona, Emilio & Lizarzaburu, Edmundo, 2024. "Evaluating asset pricing anomalies: Evidence from Latin America," Research in International Business and Finance, Elsevier, vol. 70(PB).
- Oleg Rytchkov & Xun Zhong, 2020. "Information Aggregation and P-Hacking," Management Science, INFORMS, vol. 66(4), pages 1605-1626, April.
- Andrew Y. Chen & Alejandro Lopez-Lira & Tom Zimmermann, 2022.
"Does Peer-Reviewed Research Help Predict Stock Returns?,"
Papers
2212.10317, arXiv.org, revised Dec 2025.
- Chen, Andrew Y. & Lopez-Lira, Alejandro & Zimmermann, Tom, 2024. "Does peer-reviewed research help predict stock returns?," CFR Working Papers 24-02, University of Cologne, Centre for Financial Research (CFR).
- Liao, Cunfei & Ma, Tian, 2024. "From fundamental signals to stock volatility: A machine learning approach," Pacific-Basin Finance Journal, Elsevier, vol. 84(C).
- Longyu Chen & Haitao Huang & Lei Jiang & Liang Peng & Zhongling Qin, 2025. "Validating cross-sectional dependence assumptions in a factor model," Empirical Economics, Springer, vol. 68(6), pages 2873-2895, June.
- Vitor Azevedo & Christopher Hoegner, 2023. "Enhancing stock market anomalies with machine learning," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 195-230, January.
- Constant Aka & Marie‐Hélène Gagnon & Gabriel J. Power, 2025. "Commodity Option Return Predictability," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(10), pages 1544-1578, October.
- Zhaobo Zhu & Licheng Sun & Jun Tu, 2021. "Earnings momentum meets short‐term return reversal," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(S1), pages 2379-2405, April.
- Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
- Beckmeyer, Heiner & Wiedemann, Timo, 2022. "Recovering Missing Firm Characteristics with Attention-Based Machine Learning," VfS Annual Conference 2022 (Basel): Big Data in Economics 264135, Verein für Socialpolitik / German Economic Association.
- Vu Le Tran & Guillaume Coqueret, 2023. "ESG news spillovers across the value chain," Post-Print hal-04325746, HAL.
- Linton, O. B. & Rücker, M. & Vogt, M. & Walsh, C., 2024. "Estimation and Inference in High-Dimensional Panel Data Models with Interactive Fixed Effects," Janeway Institute Working Papers 2429, Faculty of Economics, University of Cambridge.
- Claire Y. C. Liang & Rengong Zhang, 2020. "Post-earnings announcement drift and parameter uncertainty: evidence from industry and market news," Review of Quantitative Finance and Accounting, Springer, vol. 55(2), pages 695-738, August.
- Smith, Simon C., 2022. "Time-variation, multiple testing, and the factor zoo," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Allaudeen Hameed & Jing Xie & Yuxiang Zhong, 2024. "Preferences for dividends and stock returns around the world," Working Papers 202405, University of Macau, Faculty of Business Administration.
- Cici, Gjergji & Zhang, Pei (Alex), 2021. "On the valuation skills of corporate bond mutual funds," CFR Working Papers 21-05, University of Cologne, Centre for Financial Research (CFR).
- DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
- Du, Kai & Huddart, Steven & Jiang, Xin Daniel, 2023. "Lost in standardization: Effects of financial statement database discrepancies on inference," Journal of Accounting and Economics, Elsevier, vol. 76(1).
- De Nard, Gianluca & Zhao, Zhao, 2022. "A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 654-676.
- Andrew Y. Chen & Jack McCoy, 2022. "Missing Values Handling for Machine Learning Portfolios," Papers 2207.13071, arXiv.org, revised Jan 2024.
- Kristoffer Pons Bertelsen, 2022. "The Prior Adaptive Group Lasso and the Factor Zoo," CREATES Research Papers 2022-05, Department of Economics and Business Economics, Aarhus University.
- Bank, Matthias & Insam, Franz, 2021. "Corporate aging and changes in the pricing of stock characteristics," Finance Research Letters, Elsevier, vol. 42(C).
- He, Jingbin & Ma, Xinru, 2023. "Is corporate social responsibility engagement influenced by nearby firms? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 86(C).
- Maximilian Ruecker & Michael Vogt & Oliver Linton & Christopher Walsh, 2022.
"Estimation and Inference in High-Dimensional Panel Data Models with Interactive Fixed Effects,"
Papers
2206.12152, arXiv.org, revised Aug 2025.
- Linton, O. B. & Rücker, M. & Vogt, M. & Walsh, C., 2024. "Estimation and Inference in High-Dimensional Panel Data Models with Interactive Fixed Effects," Cambridge Working Papers in Economics 2467, Faculty of Economics, University of Cambridge.
- Han, Yufeng & Huang, Dashan & Huang, Dayong & Zhou, Guofu, 2022. "Expected return, volume, and mispricing," Journal of Financial Economics, Elsevier, vol. 143(3), pages 1295-1315.
- Ka Kei Chan & Ming‐Tsung Lin & Qinye Lu, 2024. "Corporate credit default swap systematic factors," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1224-1256, July.
- Han, Yufeng & Lu, Yueliang (Jacques) & Xu, Weike & Zhou, Guofu, 2024. "Mispricing and Anomalies: An Exogenous Shock to Short Selling from JGTRRA," Journal of Empirical Finance, Elsevier, vol. 78(C).
- Bali, Turan G. & Beckmeyer, Heiner & Moerke, Mathis & Weigert, Florian, 2021. "Option return predictability with machine learning and big data," CFR Working Papers 21-08, University of Cologne, Centre for Financial Research (CFR).
- Anja Vinzelberg & Benjamin R. Auer, 2022. "Unprofitability of food market investments," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(7), pages 2887-2910, October.
- Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
- Chulwoo Han, 2022. "Bimodal Characteristic Returns and Predictability Enhancement via Machine Learning," Management Science, INFORMS, vol. 68(10), pages 7701-7741, October.
- Souza, Thiago de Oliveira, 2018. "Size-related premiums," Discussion Papers on Economics 3/2018, University of Southern Denmark, Department of Economics.
- Chen Zhang, 2022. "Asset Pricing and Deep Learning," Papers 2209.12014, arXiv.org.
- Liu, Chenye & Wu, Ying & Zhu, Dongming, 2022. "Price overreaction to up-limit events and revised momentum strategies in the Chinese stock market," Economic Modelling, Elsevier, vol. 114(C).
- Käfer, Niclas & Mörke, Mathis & Weigert, Florian & Wiest, Tobias, 2025. "A Bayesian stochastic discount factor for the cross-section of individual equity options," CFR Working Papers 25-01, University of Cologne, Centre for Financial Research (CFR).
- Wang, Feifei & Yan, Xuemin Sterling, 2021. "Downside risk and the performance of volatility-managed portfolios," Journal of Banking & Finance, Elsevier, vol. 131(C).
- Back, Kerry & Crotty, Kevin & Kazempour, Seyed Mohammad, 2022. "Validity, tightness, and forecasting power of risk premium bounds," Journal of Financial Economics, Elsevier, vol. 144(3), pages 732-760.
- Ilan Cooper & Liang Ma & Paulo Maio, 2022. "What Does the Cross‐Section Tell About Itself? Explaining Equity Risk Premia with Stock Return Moments," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(1), pages 73-118, February.
- Luo, Di, 2022. "ESG, liquidity, and stock returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 78(C).
- Guillaume Coqueret, 2022. "Characteristics-driven returns in equilibrium," Papers 2203.07865, arXiv.org.
- Nusret Cakici & Christian Fieberg & Daniel Metko & Adam Zaremba, 2024. "Do Anomalies Really Predict Market Returns? New Data and New Evidence," Review of Finance, European Finance Association, vol. 28(1), pages 1-44.
- Gianluca De Nard & Simon Hediger & Markus Leippold, 2022. "Subsampled factor models for asset pricing: The rise of Vasa," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1217-1247, September.
- Kim, Jang Ho & Han, Jiwoon & Kang, Taehyeon & Fabozzi, Frank J., 2023. "A machine learning approach for comparing the largest firm effect," Emerging Markets Review, Elsevier, vol. 54(C).
- Vincent, Kendro & Hsu, Yu-Chin & Lin, Hsiou-Wei, 2021. "Investment styles and the multiple testing of cross-sectional stock return predictability," Journal of Financial Markets, Elsevier, vol. 56(C).
- Ai He & Guofu Zhou, 2023. "Diagnostics for asset pricing models," Financial Management, Financial Management Association International, vol. 52(4), pages 617-642, December.
- Esfandiar Maasoumi & Jianqiu Wang & Zhuo Wang & Ke Wu, 2024. "Identifying factors via automatic debiased machine learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 438-461, April.
- Smith, Simon C. & Timmermann, Allan, 2022. "Have risk premia vanished?," Journal of Financial Economics, Elsevier, vol. 145(2), pages 553-576.
- Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
- Cynthia M. Gong & Di Luo & Huainan Zhao, 2021. "Liquidity risk and the beta premium," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(4), pages 789-814, December.
- Guilherme V. Moura & Andr'e P. Santos & Hudson S. Torrent, 2025. "Variable selection for minimum-variance portfolios," Papers 2508.14986, arXiv.org.
- Ma, Tian & Liao, Cunfei & Jiang, Fuwei, 2024. "Factor momentum in the Chinese stock market," Journal of Empirical Finance, Elsevier, vol. 75(C).
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Guo, Li & Li, Frank Weikai & John Wei, K.C., 2020. "Security analysts and capital market anomalies," Journal of Financial Economics, Elsevier, vol. 137(1), pages 204-230.
- Hollstein, Fabian, 2022. "The world of anomalies: Smaller than we think?," Journal of International Money and Finance, Elsevier, vol. 129(C).
- Jiang, Hao & Vayanos, Dimitri & Zheng, Lu, 2020.
"Tracking biased weights: asset pricing implications of value-weighted indexing,"
LSE Research Online Documents on Economics
118847, London School of Economics and Political Science, LSE Library.
- Vayanos, Dimitri & Jiang, Hao & Zheng, Lu, 2020. "Tracking Biased Weights: Asset Pricing Implications of Value-Weighted Indexing," CEPR Discussion Papers 15563, C.E.P.R. Discussion Papers.
- Angelidis, Timotheos & Sakkas, Athanasios & Tessaromatis, Nikolaos, 2025. "Predicting commodity returns: Time series vs. cross sectional prediction models," Journal of Commodity Markets, Elsevier, vol. 38(C).
- Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can machine learning help to select portfolios of mutual funds?," Economics Working Papers 1772, Department of Economics and Business, Universitat Pompeu Fabra.
- Jinbo Cai & Wenze Li & Wenjie Wang, 2025. "Electricity Market Predictability: Virtues of Machine Learning and Links to the Macroeconomy," Papers 2507.07477, arXiv.org.
- Wang, Jinzhe & Zhu, Yifeng, 2024. "A comparison of factor models in China," Journal of Empirical Finance, Elsevier, vol. 79(C).
- Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
- Chinco, Alex & Neuhierl, Andreas & Weber, Michael, 2021.
"Estimating the anomaly base rate,"
Journal of Financial Economics, Elsevier, vol. 140(1), pages 101-126.
- Alexander M. Chinco & Andreas Neuhierl & Michael Weber, 2019. "Estimating The Anomaly Base Rate," NBER Working Papers 26493, National Bureau of Economic Research, Inc.
- Sak, Halis & Huang, Tao & Chng, Michael T., 2024. "Exploring the factor zoo with a machine-learning portfolio," International Review of Financial Analysis, Elsevier, vol. 96(PA).
- Budras, Oliver & Dierkes, Maik & Sckade, Florian, 2025. "Localized risk factors: Performance differentials between state-level and US factor models," Economic Modelling, Elsevier, vol. 147(C).
- Liao, Cunfei & Luo, Qianlin & Tang, Guohao, 2021. "Aggregate liquidity premium and cross-sectional returns: Evidence from China," Economic Modelling, Elsevier, vol. 104(C).
- Jiawei Wang & Zhen Chen, 2023. "Exploring Low-Risk Anomalies: A Dynamic CAPM Utilizing a Machine Learning Approach," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
- Benjamin R. Auer & Tobias Hiller, 2021. "Cost gap, Shapley, or nucleolus allocation: Which is the best game‐theoretic remedy for the low‐risk anomaly?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(4), pages 876-884, June.
- Thuy Duong Dang & Fabian Hollstein & Marcel Prokopczuk & Zhiguo He, 2023. "Which Factors for Corporate Bond Returns?," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 13(4), pages 615-652.
- Yuming Li, 2023. "Asset Pricing and Microcaps," Annals of Economics and Finance, Society for AEF, vol. 24(1), pages 119-140, May.
- Rudkin, Wanling & Cai, Charlie X. & Zhou, You, 2025. "Can we enhance investment with ESG?," International Review of Financial Analysis, Elsevier, vol. 97(C).
- Fallahgoul, Hasan & Franstianto, Vincentius & Lin, Xin, 2024. "Asset pricing with neural networks: Significance tests," Journal of Econometrics, Elsevier, vol. 238(1).
- Adam Farago & Erik Hjalmarsson, 2023. "Small Rebalanced Portfolios Often Beat the Market over Long Horizons," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 13(2), pages 307-342.
- Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
- Stadtmüller, Immo & Auer, Benjamin R. & Schuhmacher, Frank, 2022. "On the benefits of active stock selection strategies for diversified investors," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 342-354.
- Bohan Ma & Yushan Xue & Yuan Lu & Jing Chen, 2023. "Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks," Papers 2401.06139, arXiv.org, revised Jun 2024.
- Dandan Ma & Pengxiang Zhai & Dayong Zhang & Qiang Ji, 2024. "Excess stock returns and corporate environmental performance in China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-30, December.
- Wang, Chuyu & Li, Junye, 2024. "Volatility-managed portfolios in the Chinese equity market," Pacific-Basin Finance Journal, Elsevier, vol. 88(C).
- Rubesam, Alexandre, 2022.
"Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market,"
Emerging Markets Review, Elsevier, vol. 51(PB).
- Alexandre Rubesam, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Post-Print hal-03707365, HAL.
- Bui, Dien Giau & Kong, De-Rong & Lin, Chih-Yung & Lin, Tse-Chun, 2023. "Momentum in machine learning: Evidence from the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
- Alexandre Belloni & Mingli Chen & Oscar Hernan Madrid Padilla & Zixuan & Wang, 2019.
"High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing,"
Papers
1912.02151, arXiv.org, revised Aug 2022.
- Belloni, Alexandre & Chen, Mingli & Madrid Padilla, Oscar Hernan & Wang, Zixuan (Kevin), 2019. "High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing," The Warwick Economics Research Paper Series (TWERPS) 1230, University of Warwick, Department of Economics.
- Kazuhiro Hiraki & George Skiadopoulos, 2023. "The Contribution of Transaction Costs to Expected Stock Returns: A Novel Measure," Working Papers 946, Queen Mary University of London, School of Economics and Finance.
- Steven Y. K. Wong & Jennifer S. K. Chan & Lamiae Azizi & Richard Y. D. Xu, 2022. "Time‐varying neural network for stock return prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(1), pages 3-18, January.
- Raymond Kan & Xiaolu Wang, 2024. "Optimal Portfolio Choice with Unknown Benchmark Efficiency," Management Science, INFORMS, vol. 70(9), pages 6117-6138, September.
- Jacobs, Heiko & Müller, Sebastian, 2020. "Anomalies across the globe: Once public, no longer existent?," Journal of Financial Economics, Elsevier, vol. 135(1), pages 213-230.
- Christopher G. Lamoureux & Huacheng Zhang, 2021. "An Empirical Assessment of Characteristics and Optimal Portfolios," Papers 2104.12975, arXiv.org, revised Feb 2024.
- Konan Chan & Mei‐Xuan Li & Chu‐Bin Lin & Yanzhi Wang, 2022. "Organization capital effect in stock returns—The role of R&D," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 49(7-8), pages 1237-1263, July.
- Martin Zurek & Lars Heinrich, 2021. "Bottom-up versus top-down factor investing: an alpha forecasting perspective," Journal of Asset Management, Palgrave Macmillan, vol. 22(1), pages 11-29, February.
- Wan, Runzhe & Li, Yingying & Lu, Wenbin & Song, Rui, 2024. "Mining the factor zoo: Estimation of latent factor models with sufficient proxies," Journal of Econometrics, Elsevier, vol. 239(2).
- Shimon Kogan & Vitaly Meursault, 2021. "Corporate Disclosure: Facts or Opinions?," Working Papers 21-40, Federal Reserve Bank of Philadelphia.
- Fernando Moraes & Rodrigo De-Losso, 2020. "Risk Factors’ CPDAG Roots and the Cross-Section of Expected Returns," Working Papers, Department of Economics 2020_18, University of São Paulo (FEA-USP).
- Chen, Ding & Guo, Biao & Zhou, Guofu, 2023. "Firm fundamentals and the cross-section of implied volatility shapes," Journal of Financial Markets, Elsevier, vol. 63(C).
- Tian Ma & Cunfei Liao & Fuwei Jiang, 2023. "Timing the factor zoo via deep learning: Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 485-505, March.
- Avramov, D. & Ge, S. & Li, S. & Linton, O. B., 2025. "Dual Industry Effects and Cross-Stock Predictability," Cambridge Working Papers in Economics 2512, Faculty of Economics, University of Cambridge.
- Cakici, Nusret & Zaremba, Adam & Bianchi, Robert J. & Pham, Nga, 2021. "False discoveries in the anomaly research: New insights from the Stock Exchange of Melbourne (1927–1987)," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
- Yufeng Han & Dayong Huang & Guofu Zhou, 2021. "Anomalies enhanced: A portfolio rebalancing approach," Financial Management, Financial Management Association International, vol. 50(2), pages 371-424, June.
- Novia X. Chen & Peng-Chia Chiu & Terry Shevlin, 2023. "The persistence and pricing of changes in multinational firms’ foreign cash holdings," Review of Accounting Studies, Springer, vol. 28(4), pages 2476-2515, December.
- Qiao, Fang, 2024. "Do analysts disseminate anomaly information in China?," Journal of Banking & Finance, Elsevier, vol. 165(C).
- Vu Le Tran & Guillaume Coqueret, 2023. "ESG news spillovers across the value chain," Financial Management, Financial Management Association International, vol. 52(4), pages 677-710, December.
- Huei-Wen Teng & Yu-Hsien Li, 2023. "Can deep neural networks outperform Fama-MacBeth regression and other supervised learning approaches in stock returns prediction with asset-pricing factors?," Digital Finance, Springer, vol. 5(1), pages 149-182, March.
- Awijen, Haithem & Ben Zaied, Younes & Ben Lahouel, Béchir & Khlifi, Foued, 2023. "Machine learning for US cross-industry return predictability under information uncertainty," Research in International Business and Finance, Elsevier, vol. 64(C).
- Liu, Chenxi & Kang, Mengyao, 2024. "Is the cash-returns relationship risk induced?," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
- Jiang, Hao & Li, Sophia Zhengzi & Wang, Hao, 2021. "Pervasive underreaction: Evidence from high-frequency data," Journal of Financial Economics, Elsevier, vol. 141(2), pages 573-599.
- Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.
- Frank Schuhmacher & Hendrik Kohrs & Benjamin R. Auer, 2021. "Justifying Mean-Variance Portfolio Selection when Asset Returns Are Skewed," Management Science, INFORMS, vol. 67(12), pages 7812-7824, December.
- Kai Du & Xin Daniel Jiang, 2020. "Connections between the Market Pricing of Accruals Quality and Accounting‐Based Anomalies," Contemporary Accounting Research, John Wiley & Sons, vol. 37(4), pages 2087-2119, December.
- Hwang, Soosung & Cho, Youngha & Noh, Sanha, 2022. "The cost of overconfidence in public information," International Review of Financial Analysis, Elsevier, vol. 79(C).
- Tran, Vu Le, 2023. "Sentiment and covariance characteristics," International Review of Financial Analysis, Elsevier, vol. 86(C).
- Han, Chulwoo & Kang, Jangkoo & Kim, Sun Yung, 2022. "Betting against analyst target price," Journal of Financial Markets, Elsevier, vol. 59(PB).
- van Binsbergen, Jules H. & Boons, Martijn & Opp, Christian C. & Tamoni, Andrea, 2023. "Dynamic asset (mis)pricing: Build-up versus resolution anomalies," Journal of Financial Economics, Elsevier, vol. 147(2), pages 406-431.
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
- Hediger, Simon & Michel, Loris & Näf, Jeffrey, 2022. "On the use of random forest for two-sample testing," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
- Andrew Y. Chen, 2021. "The Limits of p‐Hacking: Some Thought Experiments," Journal of Finance, American Finance Association, vol. 76(5), pages 2447-2480, October.
- Birru, Justin & Gokkaya, Sinan & Liu, Xi & Markov, Stanimir, 2024. "Quants and market anomalies," Journal of Accounting and Economics, Elsevier, vol. 78(1).
- Shimizu, Hidehiko & Shiohama, Takayuki, 2020. "Constructing inverse factor volatility portfolios: A risk-based asset allocation for factor investing," International Review of Financial Analysis, Elsevier, vol. 68(C).
- Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
- Lisa R. Goldberg & Saad Mouti, 2019. "Sustainable Investing and the Cross-Section of Returns and Maximum Drawdown," Papers 1905.05237, arXiv.org, revised Dec 2023.
- Chiang, I-Hsuan Ethan & Kirby, Chris & Nie, Ziye Zoe, 2021. "Short-term reversals, short-term momentum, and news-driven trading activity," Journal of Banking & Finance, Elsevier, vol. 125(C).
- Byun, Suk-Joon & Cho, Sangheum & Kim, Da-Hea, 2024. "Can a machine learn from behavioral biases? Evidence from stock return predictability of deep learning models," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
- Dong, Bingbing & Jiang, Lei & Liu, Jinyu & Zhu, Yifeng, 2022. "Liquidity in the cryptocurrency market and commonalities across anomalies," International Review of Financial Analysis, Elsevier, vol. 81(C).
- Xuanpu Lin & Guoman She & Aaron Yoon & Haoran Zhu, 2025. "Shareholder value implications of supply chain ESG: evidence from negative incidents," Review of Accounting Studies, Springer, vol. 30(3), pages 2185-2217, September.
- Pawel Dlotko & Wanling Qiu & Simon Rudkin, 2019. "Financial ratios and stock returns reappraised through a topological data analysis lens," Papers 1911.10297, arXiv.org.
- Ping Li & Jiahong Li & Dong Wang, 2024. "Anomaly Identification and Premium Mining: Evidence from Chinese Urban Construction Investment Bonds," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(4), pages 945-974, December.
- Andrew Y. Chen & Tom Zimmermann, 2022. "Publication Bias in Asset Pricing Research," Papers 2209.13623, arXiv.org, revised Sep 2023.
- Angelidis, Timotheos & Tessaromatis, Nikolaos, 2023. "The disappearing profitability of volatility-managed equity factors," Journal of Financial Markets, Elsevier, vol. 65(C).
- Grammig, Joachim & Hanenberg, Constantin & Schlag, Christian & Sönksen, Jantje, 2020. "Diverging roads: Theory-based vs. machine learning-implied stock risk premia," University of Tübingen Working Papers in Business and Economics 130, University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and Economics.
- Wang, Chuyu & Zhang, Guanglong, 2025. "In the shadows of opacity: Firm information quality and latent factor model performance," International Review of Financial Analysis, Elsevier, vol. 100(C).
- Li, Bin & Rossi, Alberto G. & Yan, Xuemin (Sterling) & Zheng, Lingling, 2025. "Machine learning from a “Universe” of signals: The role of feature engineering," Journal of Financial Economics, Elsevier, vol. 172(C).
- Han, Chulwoo & He, Zhaodong & Toh, Alenson Jun Wei, 2023. "Pairs trading via unsupervised learning," European Journal of Operational Research, Elsevier, vol. 307(2), pages 929-947.
- Fernando Moraes & Rodrigo De-Losso, 2020. "Risk Factor Centrality and the Cross-Section of Expected Returns," Working Papers, Department of Economics 2020_17, University of São Paulo (FEA-USP).
- Hongyi Liu, 2025. "Deep Learning for Conditional Asset Pricing Models," Papers 2509.04812, arXiv.org.
- Lambert, Marie & Fays, Boris & Hübner, Georges, 2020. "Factoring characteristics into returns: A clinical study on the SMB and HML portfolio construction methods," Journal of Banking & Finance, Elsevier, vol. 114(C).
- Hanauer, Matthias X. & Windmüller, Steffen, 2023. "Enhanced momentum strategies," Journal of Banking & Finance, Elsevier, vol. 148(C).
- Huber, Daniel & Jacobs, Heiko & Müller, Sebastian & Preissler, Fabian, 2023. "International factor models," Journal of Banking & Finance, Elsevier, vol. 150(C).
Printed from https://ideas.repec.org/r/oup/rfinst/v30y2017i12p4389-4436..html