IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/26493.html
   My bibliography  Save this paper

Estimating The Anomaly Base Rate

Author

Listed:
  • Alexander M. Chinco
  • Andreas Neuhierl
  • Michael Weber

Abstract

The academic literature literally contains hundreds of variables that seem to predict the cross-section of expected returns. This so-called "anomaly zoo" has caused many to question whether researchers are using the right tests of statistical significance. But, here's the thing: even if researchers use the right tests, they will still draw the wrong conclusions from their econometric analyses if they start out with the wrong priors---i.e., if they start out with incorrect beliefs about the ex ante probability of encountering a tradable anomaly. So, what are the right priors? What is the correct anomaly base rate? We develop a first way to estimate the anomaly base rate by combining two key insights: 1) Empirical-Bayes methods capture the implicit process by which researchers form priors based on their past experience with other variables in the anomaly zoo. 2) Under certain conditions, there is a one-to-one mapping between these prior beliefs and the best-fit tuning parameter in a penalized regression. We study trading-strategy performance to verify our estimation results. If you trade on two variables with similar one-month-ahead return forecasts in different anomaly-base-rate regimes (low vs. high), the variable in the low base-rate regime consistently underperforms the otherwise identical variable in the high base-rate regime.

Suggested Citation

  • Alexander M. Chinco & Andreas Neuhierl & Michael Weber, 2019. "Estimating The Anomaly Base Rate," NBER Working Papers 26493, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:26493
    Note: AP CF
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w26493.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    2. Bryan Kelly & Seth Pruitt & Yinan Su, 2018. "Characteristics Are Covariances: A Unified Model of Risk and Return," NBER Working Papers 24540, National Bureau of Economic Research, Inc.
    3. Ferson, Wayne E. & Sarkissian, Sergei & Simin, Timothy, 1999. "The alpha factor asset pricing model: A parable," Journal of Financial Markets, Elsevier, vol. 2(1), pages 49-68, February.
    4. Shanken, Jay, 1987. "A Bayesian approach to testing portfolio efficiency," Journal of Financial Economics, Elsevier, vol. 19(2), pages 195-215, December.
    5. Christopher A. Pissarides & Barbara Petrongolo, 2001. "Looking into the Black Box: A Survey of the Matching Function," Journal of Economic Literature, American Economic Association, vol. 39(2), pages 390-431, June.
    6. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‚ÄźSnooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    7. Laurent Barras & Olivier Scaillet & Russ Wermers, 2010. "False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas," Journal of Finance, American Finance Association, vol. 65(1), pages 179-216, February.
    8. Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020. "Shrinking the cross-section," Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
    9. Barberis, Nicholas & Thaler, Richard, 2003. "A survey of behavioral finance," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.),Handbook of the Economics of Finance, edition 1, volume 1, chapter 18, pages 1053-1128, Elsevier.
    10. Martin Lettau & Markus Pelger, 2018. "Estimating Latent Asset-Pricing Factors," NBER Working Papers 24618, National Bureau of Economic Research, Inc.
    11. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    12. Lewellen, Jonathan & Nagel, Stefan & Shanken, Jay, 2010. "A skeptical appraisal of asset pricing tests," Journal of Financial Economics, Elsevier, vol. 96(2), pages 175-194, May.
    13. Harvey, Campbell R. & Zhou, Guofu, 1990. "Bayesian inference in asset pricing tests," Journal of Financial Economics, Elsevier, vol. 26(2), pages 221-254, August.
    14. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, Oxford University Press, vol. 131(4), pages 1593-1636.
    15. Campbell R. Harvey, 2017. "Presidential Address: The Scientific Outlook in Financial Economics," Journal of Finance, American Finance Association, vol. 72(4), pages 1399-1440, August.
    16. Jeremiah Green & John R. M. Hand & X. Frank Zhang, 2017. "The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns," Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4389-4436.
    17. Lettau, Martin & Pelger, Markus, 2018. "Estimating Latent Asset-Pricing Factors," CEPR Discussion Papers 12926, C.E.P.R. Discussion Papers.
    18. Xuemin (Sterling) Yan & Lingling Zheng, 2017. "Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach," Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1382-1423.
    19. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    20. R. David Mclean & Jeffrey Pontiff, 2016. "Does Academic Research Destroy Stock Return Predictability?," Journal of Finance, American Finance Association, vol. 71(1), pages 5-32, February.
    21. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    22. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    23. Titman, Sheridan & Wei, K. C. John & Xie, Feixue, 2004. "Capital Investments and Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(4), pages 677-700, December.
    24. Serhiy Kozak & Stefan Nagel & Shrihari Santosh, 2018. "Interpreting Factor Models," Journal of Finance, American Finance Association, vol. 73(3), pages 1183-1223, June.
    25. Fama, Eugene F & French, Kenneth R, 1996. "Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
    26. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    27. Moskowitz, Tobias J. & Ooi, Yao Hua & Pedersen, Lasse Heje, 2012. "Time series momentum," Journal of Financial Economics, Elsevier, vol. 104(2), pages 228-250.
    28. Alan Moreira & Tyler Muir, 2017. "Volatility-Managed Portfolios," Journal of Finance, American Finance Association, vol. 72(4), pages 1611-1644, August.
    29. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:26493. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.