IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.07477.html
   My bibliography  Save this paper

Electricity Market Predictability: Virtues of Machine Learning and Links to the Macroeconomy

Author

Listed:
  • Jinbo Cai
  • Wenze Li
  • Wenjie Wang

Abstract

With stakeholder-level in-market data, we conduct a comparative analysis of machine learning (ML) for forecasting electricity prices in Singapore, spanning 15 individual models and 4 ensemble approaches. Our empirical findings justify the three virtues of ML models: (1) the virtue of capturing non-linearity, (2) the complexity (Kelly et al., 2024) and (3) the l2-norm and bagging techniques in a weak factor environment (Shen and Xiu, 2024). Simulation also supports the first virtue. Penalizing prediction correlation improves ensemble performance when individual models are highly correlated. The predictability can be translated into sizable economic gains under the mean-variance framework. We also reveal significant patterns of time-series heterogeneous predictability across macro regimes: predictability is clustered in expansion, volatile market and extreme geopolitical risk periods. Our feature importance results agree with the complex dynamics of Singapore's electricity market after de regulation, yet highlight its relatively supply-driven nature with the continued presence of strong regulatory influences.

Suggested Citation

  • Jinbo Cai & Wenze Li & Wenjie Wang, 2025. "Electricity Market Predictability: Virtues of Machine Learning and Links to the Macroeconomy," Papers 2507.07477, arXiv.org.
  • Handle: RePEc:arx:papers:2507.07477
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.07477
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.07477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.