IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v30y2002i6p511-523.html
   My bibliography  Save this item

Direct and indirect energy requirements of households in India

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Martinho, Vítor João Pereira Domingues, 2021. "Direct and indirect energy consumption in farming: Impacts from fertilizer use," Energy, Elsevier, vol. 236(C).
  2. Sokołowski, Maciej M., 2019. "When black meets green: A review of the four pillars of India's energy policy," Energy Policy, Elsevier, vol. 130(C), pages 60-68.
  3. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
  4. Akkemik, K. Ali, 2011. "Potential impacts of electricity price changes on price formation in the economy: a social accounting matrix price modeling analysis for Turkey," Energy Policy, Elsevier, vol. 39(2), pages 854-864, February.
  5. Li, Huanan & Wei, Yi-Ming, 2015. "Is it possible for China to reduce its total CO2 emissions?," Energy, Elsevier, vol. 83(C), pages 438-446.
  6. Liu, Hong-Tao & Guo, Ju-E & Qian, Dong & Xi, You-Min, 2009. "Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis," Energy Policy, Elsevier, vol. 37(8), pages 3194-3204, August.
  7. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
  8. K.J. Sreekanth & S. Jayarah & N. Sudarsan, 2011. "A Meta Model for Domestic Energy Consumption," International Journal of Energy Economics and Policy, Econjournals, vol. 1(3), pages 69-77, November.
  9. Lenzen, Manfred & Wier, Mette & Cohen, Claude & Hayami, Hitoshi & Pachauri, Shonali & Schaeffer, Roberto, 2006. "A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan," Energy, Elsevier, vol. 31(2), pages 181-207.
  10. Han, Sang-Yong & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2004. "The role of the four electric power sectors in the Korean national economy: an input-output analysis," Energy Policy, Elsevier, vol. 32(13), pages 1531-1543, September.
  11. Rao, Narasimha D., 2013. "Distributional impacts of climate change mitigation in Indian electricity: The influence of governance," Energy Policy, Elsevier, vol. 61(C), pages 1344-1356.
  12. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
  13. Jiang, Yida & Long, Yin & Liu, Qiaoling & Dowaki, Kiyoshi & Ihara, Tomohiko, 2020. "Carbon emission quantification and decarbonization policy exploration for the household sector - Evidence from 51 Japanese cities," Energy Policy, Elsevier, vol. 140(C).
  14. Kennedy, Christopher & Steinberger, Julia & Gasson, Barrie & Hansen, Yvonne & Hillman, Timothy & Havránek, Miroslav & Pataki, Diane & Phdungsilp, Aumnad & Ramaswami, Anu & Mendez, Gara Villalba, 2010. "Methodology for inventorying greenhouse gas emissions from global cities," Energy Policy, Elsevier, vol. 38(9), pages 4828-4837, September.
  15. Wei, Yi-Ming & Liu, Lan-Cui & Fan, Ying & Wu, Gang, 2007. "The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China's residents," Energy Policy, Elsevier, vol. 35(1), pages 247-257, January.
  16. Kok, Rixt & Benders, Rene M.J. & Moll, Henri C., 2006. "Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results," Energy Policy, Elsevier, vol. 34(17), pages 2744-2761, November.
  17. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2019. "Interactions in Swiss households’ energy demand: A holistic approach," Energy Policy, Elsevier, vol. 128(C), pages 136-149.
  18. Chung, Whan-Sam & Tohno, Susumu & Shim, Sang Yul, 2009. "An estimation of energy and GHG emission intensity caused by energy consumption in Korea: An energy IO approach," Applied Energy, Elsevier, vol. 86(10), pages 1902-1914, October.
  19. Yong Yang & Junsong Jia & Adam T. Devlin & Yangming Zhou & Dongming Xie & Min Ju, 2020. "Decoupling and Decomposition Analysis of Residential Energy Consumption from Economic Growth during 2000–2017: A Comparative Study of Urban and Rural Guangdong, China," Energies, MDPI, vol. 13(17), pages 1-21, August.
  20. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
  21. Jiansheng Qu & Tek Maraseni & Lina Liu & Zhiqiang Zhang & Talal Yusaf, 2015. "A Comparison of Household Carbon Emission Patterns of Urban and Rural China over the 17 Year Period (1995–2011)," Energies, MDPI, vol. 8(9), pages 1-21, September.
  22. Das, Aparna & Paul, Saikat Kumar, 2013. "Changes in energy requirements of the residential sector in India between 1993–94 and 2006–07," Energy Policy, Elsevier, vol. 53(C), pages 27-40.
  23. Shonali Pachauri & Daniel Spreng, 2003. "Energy use and energy access in relation to poverty," CEPE Working paper series 03-25, CEPE Center for Energy Policy and Economics, ETH Zurich.
  24. Yosuke Shigetomi & Keisuke Nansai & Shigemi Kagawa & Susumu Tohno, 2016. "Influence of income difference on carbon and material footprints for critical metals: the case of Japanese households," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
  25. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
  26. Li, Xi & Zhang, Runsen & Chen, Jundong & Jiang, Yida & Zhang, Qiong & Long, Yin, 2021. "Urban-scale carbon footprint evaluation based on citizen travel demand in Japan," Applied Energy, Elsevier, vol. 286(C).
  27. Wenwen Wang & Ming Zhang, 2015. "Direct and indirect energy consumption of rural households in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1693-1705, December.
  28. Xiao-Wei Ma & Jia Du & Meng-Ying Zhang & Yi Ye, 2016. "Indirect carbon emissions from household consumption between China and the USA: based on an input–output model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 399-410, November.
  29. Focacci, Antonio, 2005. "Empirical analysis of the environmental and energy policies in some developing countries using widely employed macroeconomic indicators: the cases of Brazil, China and India," Energy Policy, Elsevier, vol. 33(4), pages 543-554, March.
  30. Moises Neil V. Seriño & Stephan Klasen, 2015. "Estimation and Determinants of the Philippines' Household Carbon Footprint," The Developing Economies, Institute of Developing Economies, vol. 53(1), pages 44-62, March.
  31. Filippín, C. & Flores Larsen, S., 2009. "Analysis of energy consumption patterns in multi-family housing in a moderate cold climate," Energy Policy, Elsevier, vol. 37(9), pages 3489-3501, September.
  32. Zhang, Yan & Zheng, Hongmei & Yang, Zhifeng & Su, Meirong & Liu, Gengyuan & Li, Yanxian, 2015. "Multi-regional input–output model and ecological network analysis for regional embodied energy accounting in China," Energy Policy, Elsevier, vol. 86(C), pages 651-663.
  33. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
  34. Yawale, Satish Kumar & Hanaoka, Tatsuya & Kapshe, Manmohan, 2021. "Development of energy balance table for rural and urban households and evaluation of energy consumption in Indian states," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
  35. Srivastava, Leena & Goswami, Anandajit & Diljun, Gaurang Meher & Chaudhury, Saswata, 2012. "Energy access: Revelations from energy consumption patterns in rural India," Energy Policy, Elsevier, vol. 47(S1), pages 11-20.
  36. Meangbua, Onicha & Dhakal, Shobhakar & Kuwornu, John K.M., 2019. "Factors influencing energy requirements and CO2 emissions of households in Thailand: A panel data analysis," Energy Policy, Elsevier, vol. 129(C), pages 521-531.
  37. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
  38. Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
  39. Das, Karabee & Hiloidhari, Moonmoon & Baruah, D.C. & Nonhebel, Sanderine, 2018. "Impact of time expenditure on household preferences for cooking fuels," Energy, Elsevier, vol. 151(C), pages 309-316.
  40. Park, Hi-Chun & Heo, Eunnyeong, 2007. "The direct and indirect household energy requirements in the Republic of Korea from 1980 to 2000--An input-output analysis," Energy Policy, Elsevier, vol. 35(5), pages 2839-2851, May.
  41. Mukaramah Harun, 2020. "Pursuing More Sustainable Energy Consumption by Analyzing Sectoral Direct and Indirect Energy Use in Malaysia: An Input-Output Analysis," Papers 2001.02508, arXiv.org.
  42. Bhattacharyya, Subhes C., 2015. "Influence of India’s transformation on residential energy demand," Applied Energy, Elsevier, vol. 143(C), pages 228-237.
  43. Cohen, Claude & Lenzen, Manfred & Schaeffer, Roberto, 2005. "Energy requirements of households in Brazil," Energy Policy, Elsevier, vol. 33(4), pages 555-562, March.
  44. Moises Neil V. Seriño, 2017. "Is Decoupling Possible? Association between Affluence and Household Carbon Emissions in the Philippines," Asian Economic Journal, East Asian Economic Association, vol. 31(2), pages 165-185, June.
  45. Sirous Ghanbari & Mohammad Reza Mansouri Daneshvar, 2021. "Urban and rural contribution to the GHG emissions in the MECA countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6418-6452, April.
  46. Lan-Cui Liu & Gang Wu & Jin-Nan Wang & Yi-Ming Wei, 2010. "China's carbon emissions from urban and rural households during 1992-2007," CEEP-BIT Working Papers 12, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  47. Räty, R. & Carlsson-Kanyama, A., 2010. "Energy consumption by gender in some European countries," Energy Policy, Elsevier, vol. 38(1), pages 646-649, January.
  48. Jingjing Chen & Yangyang Lin & Xiaojun Wang & Bingjing Mao & Lihong Peng, 2022. "Direct and Indirect Carbon Emission from Household Consumption Based on LMDI and SDA Model: A Decomposition and Comparison Analysis," Energies, MDPI, vol. 15(14), pages 1-22, July.
  49. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
  50. Hongwu Zhang & Lequan Zhang & Keying Wang & Xunpeng Shi, 2019. "Unveiling Key Drivers of Indirect Carbon Emissions of Chinese Older Households," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
  51. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
  52. Xu, Xinkuo & Han, Liyan & Lv, Xiaofeng, 2016. "Household carbon inequality in urban China, its sources and determinants," Ecological Economics, Elsevier, vol. 128(C), pages 77-86.
  53. Yawale, Satish Kumar & Hanaoka, Tatsuya & Kapshe, Manmohan & Pandey, Rahul, 2023. "End-use energy projections: Future regional disparity and energy poverty at the household level in rural and urban areas of India," Energy Policy, Elsevier, vol. 182(C).
  54. Zhipeng Tang & Shuang Wu & Jialing Zou, 2020. "Consumption substitution and change of household indirect energy consumption in China between 1997 and 2012," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
  55. Jihoon Min & Narasimha D. Rao, 2018. "Estimating Uncertainty in Household Energy Footprints," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1307-1317, December.
  56. Bah, Muhammad Maladoh & Saari, M. Yusof, 2020. "Quantifying the impacts of energy price reform on living expenses in Saudi Arabia," Energy Policy, Elsevier, vol. 139(C).
  57. Xiaoyu Liu & Xian’en Wang & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "Why Are the Carbon Footprints of China’s Urban Households Rising? An Input–Output Analysis and Structural Decomposition Analysis," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
  58. Hannah Goozee, 2017. "Energy, Poverty and Development: A Primer for the Sustainable Development Goals," Working Papers id:11933, eSocialSciences.
  59. Steckel, Jan Christoph & Brecha, Robert J. & Jakob, Michael & Strefler, Jessica & Luderer, Gunnar, 2013. "Development without energy? Assessing future scenarios of energy consumption in developing countries," Ecological Economics, Elsevier, vol. 90(C), pages 53-67.
  60. Tao Lin & Junna Yan, 2017. "Investigating the sensitivity factors of household indirect CO2 emission from the production side," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 721-740, September.
  61. Vringer, Kees & Aalbers, Theo & Blok, Kornelis, 2007. "Household energy requirement and value patterns," Energy Policy, Elsevier, vol. 35(1), pages 553-566, January.
  62. Whan-Sam Chung & Susumu Tohno, 2009. "A Time-Series Energy Input-Output Analysis for Building an Infrastructure for the Energy and Environment Policy in South Korea," Energy & Environment, , vol. 20(6), pages 875-899, October.
  63. Pachauri, Shonali, 2004. "An analysis of cross-sectional variations in total household energy requirements in India using micro survey data," Energy Policy, Elsevier, vol. 32(15), pages 1723-1735, October.
  64. Lan-Cui Liu & Gang Wu & Yue-Jun Zhang, 2015. "Investigating the residential energy consumption behaviors in Beijing: a survey study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 243-263, January.
  65. Wu, X.F. & Chen, G.Q., 2017. "Global primary energy use associated with production, consumption and international trade," Energy Policy, Elsevier, vol. 111(C), pages 85-94.
  66. Ivan Tilov & Benjamin Volland & Mehdi Farsi, 2017. "Interactions in Swiss Households' Energy Demand: A Holistic Approach," IRENE Working Papers 17-11, IRENE Institute of Economic Research.
  67. Bai, Yin & Liu, Yong, 2013. "An exploration of residents’ low-carbon awareness and behavior in Tianjin, China," Energy Policy, Elsevier, vol. 61(C), pages 1261-1270.
  68. Ferguson, Thomas M. & MacLean, Heather L., 2011. "Trade-linked Canada–United States household environmental impact analysis of energy use and greenhouse gas emissions," Energy Policy, Elsevier, vol. 39(12), pages 8011-8021.
  69. Rout, Ullash K., 2011. "Prospects of India's energy and emissions for a long time frame," Energy Policy, Elsevier, vol. 39(9), pages 5647-5663, September.
  70. Eléonore Fauré & Åsa Svenfelt & Göran Finnveden & Alf Hornborg, 2016. "Four Sustainability Goals in a Swedish Low-Growth/Degrowth Context," Sustainability, MDPI, vol. 8(11), pages 1-18, October.
  71. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
  72. Edeltraud Haselsteiner & Barbara Smetschka & Alexander Remesch & Veronika Gaube, 2015. "Time-Use Patterns and Sustainable Urban Form: A Case Study to Explore Potential Links," Sustainability, MDPI, vol. 7(6), pages 1-29, June.
  73. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Tohno, Susumu, 2015. "Trends in Japanese households' critical-metals material footprints," Ecological Economics, Elsevier, vol. 119(C), pages 118-126.
  74. Zhang, Xiaoling & Wang, Yue, 2017. "How to reduce household carbon emissions: A review of experience and policy design considerations," Energy Policy, Elsevier, vol. 102(C), pages 116-124.
  75. Ramachandra, T.V. & Aithal, Bharath H. & Sreejith, K., 2015. "GHG footprint of major cities in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 473-495.
  76. Gonzalez, A.D. & Carlsson-Kanyama, A. & Crivelli, E.S. & Gortari, S., 2007. "Residential energy use in one-family households with natural gas provision in a city of the Patagonian Andean region," Energy Policy, Elsevier, vol. 35(4), pages 2141-2150, April.
  77. Schulz, Niels B., 2010. "Delving into the carbon footprints of Singapore--comparing direct and indirect greenhouse gas emissions of a small and open economic system," Energy Policy, Elsevier, vol. 38(9), pages 4848-4855, September.
  78. Shu Yang & Dingtao Zhao & Yanrui Wu & Jin Fan, 2013. "Regional Variation in Carbon Emissions and its Driving Forces in China: An Index Decomposition Analysis," Energy & Environment, , vol. 24(7-8), pages 1249-1270, December.
  79. Yong Liu & Jin Liu & Yunpeng Su, 2021. "Low-Carbon Awareness and Behaviors: Effects of Exposure to Climate Change Impact Photographs," SAGE Open, , vol. 11(3), pages 21582440211, July.
  80. Yongchun Huang & Chengmeng Chen & Dejin Su & Shangshuo Wu, 2020. "Comparison of leading‐industrialisation and crossing‐industrialisation economic growth patterns in the context of sustainable development: Lessons from China and India," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1077-1085, September.
  81. Kakali Mukhopadhyay, 2008. "Air pollution and income distribution in India," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 15(1), pages 35-64, June.
  82. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, vol. 11(5), pages 1-17, May.
  83. Yulin Liu & Min Zhang & Rujia Liu, 2020. "The Impact of Income Inequality on Carbon Emissions in China: A Household-Level Analysis," Sustainability, MDPI, vol. 12(7), pages 1-22, March.
  84. René M.J. Benders & Henri C. Moll & Durk S. Nijdam, 2012. "From Energy to Environmental Analysis," Journal of Industrial Ecology, Yale University, vol. 16(2), pages 163-175, April.
  85. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
  86. Sinha, Avik & Bhattacharya, Joysankar, 2017. "Estimation of environmental Kuznets curve for SO2 emission: A case of Indian cities," MPRA Paper 100009, University Library of Munich, Germany.
  87. Damilola Adeyeye & Adeyemi Olusola & Israel Ropo Orimoloye & Sudhir Kumar Singh & Samuel Adelabu, 2023. "Carbon footprint assessment and mitigation scenarios: a benchmark model for GHG indicator in a Nigerian University," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1361-1382, February.
  88. Chang Liu & Zhanyu Zhang & Shuya Liu & Qiaoyuan Liu & Baoping Feng & Julia Tanzer, 2019. "Evaluating Agricultural Sustainability Based on the Water–Energy–Food Nexus in the Chenmengquan Irrigation District of China," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
  89. Kentaka Aruga, 2003. "Differences in Characteristics ofReligious Groups in India: As Seen From Household Survey Data," CEPE Working paper series 03-26, CEPE Center for Energy Policy and Economics, ETH Zurich.
  90. Tharinya Supasa & Shu-San Hsiau & Shih-Mo Lin & Wongkot Wongsapai & Jiunn-Chi Wu, 2017. "Household Energy Consumption Behaviour for Different Demographic Regions in Thailand from 2000 to 2010," Sustainability, MDPI, vol. 9(12), pages 1-22, December.
  91. K, Sudarkodi, 2009. "Achieving Sustainable Consumption for Sustainable Development: Issues and Solutions," MPRA Paper 15755, University Library of Munich, Germany.
  92. Wang, Shaojian & Zeng, Jingyuan & Huang, Yongyuan & Shi, Chenyi & Zhan, Peiyu, 2018. "The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis," Applied Energy, Elsevier, vol. 228(C), pages 1693-1706.
  93. Emilio Zagheni, 2011. "The Leverage of Demographic Dynamics on Carbon Dioxide Emissions: Does Age Structure Matter?," Demography, Springer;Population Association of America (PAA), vol. 48(1), pages 371-399, February.
  94. Nasseri, Iman & Assané, Djeto & Konan, Denise Eby, 2015. "While visitors conserve, residents splurge: Patterns and changes in energy consumption, 1997-2007," Energy Economics, Elsevier, vol. 49(C), pages 282-292.
  95. Nadimi, Reza & Tokimatsu, Koji, 2018. "Modeling of quality of life in terms of energy and electricity consumption," Applied Energy, Elsevier, vol. 212(C), pages 1282-1294.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.