IDEAS home Printed from https://ideas.repec.org/r/cdl/itsdav/qt46x6h0n0.html
   My bibliography  Save this item

Use of experience curves to estimate the future cost of power plants with CO2 capture

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yao, Xing & Zhong, Ping & Zhang, Xian & Zhu, Lei, 2018. "Business model design for the carbon capture utilization and storage (CCUS) project in China," Energy Policy, Elsevier, vol. 121(C), pages 519-533.
  2. Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying Endogenous Learning Models in Energy System Optimization," Energies, MDPI, vol. 14(16), pages 1-21, August.
  3. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2015. "Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 157(C), pages 229-244.
  4. Hayward, Jennifer A. & Graham, Paul W., 2013. "A global and local endogenous experience curve model for projecting future uptake and cost of electricity generation technologies," Energy Economics, Elsevier, vol. 40(C), pages 537-548.
  5. Fan, Jing-Li & Xu, Mao & Yang, Lin & Zhang, Xian & Li, Fengyu, 2019. "How can carbon capture utilization and storage be incentivized in China? A perspective based on the 45Q tax credit provisions," Energy Policy, Elsevier, vol. 132(C), pages 1229-1240.
  6. Praetorius, Barbara & Schumacher, Katja, 2009. "Greenhouse gas mitigation in a carbon constrained world: The role of carbon capture and storage," Energy Policy, Elsevier, vol. 37(12), pages 5081-5093, December.
  7. Nicodemus, Julia Haltiwanger, 2018. "Technological learning and the future of solar H2: A component learning comparison of solar thermochemical cycles and electrolysis with solar PV," Energy Policy, Elsevier, vol. 120(C), pages 100-109.
  8. Escudero, Marcos & Jiménez, Ángel & González, Celina & López, Ignacio, 2013. "Quantitative analysis of potential power production and environmental benefits of Biomass Integrated Gasification Combined Cycles in the European Union," Energy Policy, Elsevier, vol. 53(C), pages 63-75.
  9. Aguilera, Roberto F., 2014. "Production costs of global conventional and unconventional petroleum," Energy Policy, Elsevier, vol. 64(C), pages 134-140.
  10. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
  11. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
  12. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
  13. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves for pulverized coal-fired utility boilers," Energy, Elsevier, vol. 32(10), pages 1996-2005.
  14. Choi, Donghyun & Kim, Yeong Jae, 2023. "Local and global experience curves for lumpy and granular energy technologies," Energy Policy, Elsevier, vol. 174(C).
  15. Li, Sheng & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2012. "Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies," Applied Energy, Elsevier, vol. 93(C), pages 348-356.
  16. Zhou, Li & Duan, Maosheng & Yu, Yadong & Zhang, Xiliang, 2018. "Learning rates and cost reduction potential of indirect coal-to-liquid technology coupled with CO2 capture," Energy, Elsevier, vol. 165(PB), pages 21-32.
  17. Herui Cui & Tian Zhao & Ruirui Wu, 2018. "An Investment Feasibility Analysis of CCS Retrofit Based on a Two-Stage Compound Real Options Model," Energies, MDPI, vol. 11(7), pages 1-19, July.
  18. Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying endogenous learning models in energy system optimization," Papers 2106.06373, arXiv.org.
  19. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
  20. Upstill, Garrett & Hall, Peter, 2018. "Estimating the learning rate of a technology with multiple variants: The case of carbon storage," Energy Policy, Elsevier, vol. 121(C), pages 498-505.
  21. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  22. Alfredo Viskovic & Vladimir Valentic & Vladimir Franki, 2013. "The impac t of carbon prices on CCS investment in South East Europe," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(3), pages 91-120.
  23. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
  24. Kemp, Alexander G. & Sola Kasim, A., 2010. "A futuristic least-cost optimisation model of CO2 transportation and storage in the UK/UK Continental Shelf," Energy Policy, Elsevier, vol. 38(7), pages 3652-3667, July.
  25. Hochman, Gal & Zilberman, David, 2021. "Optimal environmental taxation in response to an environmentally-unfriendly political challenger," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
  26. Renner, Marie, 2014. "Carbon prices and CCS investment: A comparative study between the European Union and China," Energy Policy, Elsevier, vol. 75(C), pages 327-340.
  27. Muratori, Matteo & Ledna, Catherine & McJeon, Haewon & Kyle, Page & Patel, Pralit & Kim, Son H. & Wise, Marshall & Kheshgi, Haroon S. & Clarke, Leon E. & Edmonds, Jae, 2017. "Cost of power or power of cost: A U.S. modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 861-874.
  28. Yang, Hang & Zhang, Yongxin & Zheng, Chenghang & Wu, Xuecheng & Chen, Linghong & Fu, Joshua S. & Gao, Xiang, 2018. "Cost estimate of the multi-pollutant abatement in coal-fired power sector in China," Energy, Elsevier, vol. 161(C), pages 523-535.
  29. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
  30. Akbilgic, Oguz & Doluweera, Ganesh & Mahmoudkhani, Maryam & Bergerson, Joule, 2015. "A meta-analysis of carbon capture and storage technology assessments: Understanding the driving factors of variability in cost estimates," Applied Energy, Elsevier, vol. 159(C), pages 11-18.
  31. Fan, Jing-Li & Li, Zezheng & Li, Kai & Zhang, Xian, 2022. "Modelling plant-level abatement costs and effects of incentive policies for coal-fired power generation retrofitted with CCUS," Energy Policy, Elsevier, vol. 165(C).
  32. Evar, Benjamin, 2011. "Conditional inevitability: Expert perceptions of carbon capture and storage uncertainties in the UK context," Energy Policy, Elsevier, vol. 39(6), pages 3414-3424, June.
  33. Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
  34. Xu, Zhongming & Fang, Chenhao & Ma, Tieju, 2020. "Analysis of China’s olefin industry using a system optimization model considering technological learning and energy consumption reduction," Energy, Elsevier, vol. 191(C).
  35. Peters, Michael & Schmidt, Tobias S. & Wiederkehr, David & Schneider, Malte, 2011. "Shedding light on solar technologies'A techno-economic assessment and its policy implications," Energy Policy, Elsevier, vol. 39(10), pages 6422-6439, October.
  36. Yang, Lin & Lv, Haodong & Wei, Ning & Li, Yiming & Zhang, Xian, 2023. "Dynamic optimization of carbon capture technology deployment targeting carbon neutrality, cost efficiency and water stress: Evidence from China's electric power sector," Energy Economics, Elsevier, vol. 125(C).
  37. Moura, Maria Cecilia P. & Branco, David A. Castelo & Peters, Glen P. & Szklo, Alexandre Salem & Schaeffer, Roberto, 2013. "How the choice of multi-gas equivalency metrics affects mitigation options: The case of CO2 capture in a Brazilian coal-fired power plant," Energy Policy, Elsevier, vol. 61(C), pages 1357-1366.
  38. Fan, Jing-Li & Xu, Mao & Yang, Lin & Zhang, Xian, 2019. "Benefit evaluation of investment in CCS retrofitting of coal-fired power plants and PV power plants in China based on real options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  39. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
  40. Aguilera, Roberto F. & Ripple, Ronald D., 2012. "Technological progress and the availability of European oil and gas resources," Applied Energy, Elsevier, vol. 96(C), pages 387-392.
  41. Watson, Jim & Kern, Florian & Markusson, Nils, 2014. "Resolving or managing uncertainties for carbon capture and storage: Lessons from historical analogues," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 192-204.
  42. Tzimas, Evangelos & Georgakaki, Aliki, 2010. "A long-term view of fossil-fuelled power generation in Europe," Energy Policy, Elsevier, vol. 38(8), pages 4252-4264, August.
  43. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
  44. Li, Sheng & Gao, Lin & Zhang, Xiaosong & Lin, Hu & Jin, Hongguang, 2012. "Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture," Energy, Elsevier, vol. 45(1), pages 101-106.
  45. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  46. Wu Haibo & Liu Zhaohui, 2018. "Economic research relating to a 200 MWe oxy‐fuel combustion power plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 911-919, October.
  47. Gregory F. Nemet and Adam R. Brandt, 2012. "Willingness to Pay for a Climate Backstop: Liquid Fuel Producers and Direct CO2 Air Capture," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  48. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
  49. Santhakumar, Srinivasan & Smart, Gavin & Noonan, Miriam & Meerman, Hans & Faaij, André, 2022. "Technological progress observed for fixed-bottom offshore wind in the EU and UK," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
  50. Andrew William Ruttinger & Miyuru Kannangara & Jalil Shadbahr & Phil De Luna & Farid Bensebaa, 2021. "How CO 2 -to-Diesel Technology Could Help Reach Net-Zero Emissions Targets: A Canadian Case Study," Energies, MDPI, vol. 14(21), pages 1-21, October.
  51. Lee, Hwarang & Lee, Jeongeun & Koo, Yoonmo, 2022. "Economic impacts of carbon capture and storage on the steel industry–A hybrid energy system model incorporating technological change," Applied Energy, Elsevier, vol. 317(C).
  52. Marie Renner, 2014. "Carbon prices and CCS investment: comparative study between the European Union and China," Working Papers 1402, Chaire Economie du climat.
  53. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Kraslawski, Andrzej & Irabien, Angel, 2013. "Stochastic MILP model for optimal timing of investments in CO2 capture technologies under uncertainty in prices," Energy, Elsevier, vol. 54(C), pages 343-351.
  54. Bistline, John E., 2015. "Electric sector capacity planning under uncertainty: Climate policy and natural gas in the US," Energy Economics, Elsevier, vol. 51(C), pages 236-251.
  55. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2014. "Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 117(C), pages 62-75.
  56. van den Broek, Machteld & Berghout, Niels & Rubin, Edward S., 2015. "The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1296-1322.
  57. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
  58. Hadjipaschalis, Ioannis & Kourtis, George & Poullikkas, Andreas, 2009. "Assessment of oxyfuel power generation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2637-2644, December.
  59. Yao, Xing & Fan, Ying & Zhu, Lei & Zhang, Xian, 2020. "Optimization of dynamic incentive for the deployment of carbon dioxide removal technology: A nonlinear dynamic approach combined with real options," Energy Economics, Elsevier, vol. 86(C).
  60. Dominic Woolf & Johannes Lehmann & David R. Lee, 2016. "Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
  61. Lilliestam, Johan & Bielicki, Jeffrey M. & Patt, Anthony G., 2012. "Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers," Energy Policy, Elsevier, vol. 47(C), pages 447-455.
  62. Akrami, Ehsan & Ameri, Mohammad & Rocco, Matteo V., 2021. "Conceptual design, exergoeconomic analysis and multi-objective optimization for a novel integration of biomass-fueled power plant with MCFC-cryogenic CO2 separation unit for low-carbon power productio," Energy, Elsevier, vol. 227(C).
  63. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
  64. Zhou, Wenji & Zhu, Bing & Chen, Dingjiang & Zhao, Fangxian & Fei, Weiyang, 2014. "How policy choice affects investment in low-carbon technology: The case of CO2 capture in indirect coal liquefaction in China," Energy, Elsevier, vol. 73(C), pages 670-679.
  65. repec:dau:papers:123456789/12983 is not listed on IDEAS
  66. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
  67. Hernandez-Negron, Christian G. & Baker, Erin & Goldstein, Anna P., 2023. "A hypothesis for experience curves of related technologies with an application to wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
  68. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  69. Motlaghzadeh, Kasra & Schweizer, Vanessa & Craik, Neil & Moreno-Cruz, Juan, 2023. "Key uncertainties behind global projections of direct air capture deployment," Applied Energy, Elsevier, vol. 348(C).
  70. Comello, Stephen & Reichelstein, Stefan, 2014. "Incentives for early adoption of carbon capture technology," Energy Policy, Elsevier, vol. 74(C), pages 579-588.
  71. Leibowicz, Benjamin D. & Krey, Volker & Grubler, Arnulf, 2016. "Representing spatial technology diffusion in an energy system optimization model," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 350-363.
  72. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
  73. Rammerstorfer, Margarethe & Eisl, Roland, 2011. "Carbon capture and storage—Investment strategies for the future?," Energy Policy, Elsevier, vol. 39(11), pages 7103-7111.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.