IDEAS home Printed from https://ideas.repec.org/a/aen/journl/33-1-a03.html
   My bibliography  Save this article

Willingness to Pay for a Climate Backstop: Liquid Fuel Producers and Direct CO2 Air Capture

Author

Listed:
  • Gregory F. Nemet and Adam R. Brandt

Abstract

We conduct a sensitivity analysis to describe conditions under which liquid fuel producers would fund the development of a climate backstop. We estimate (1) the cost to develop competitively priced direct CO2 air capture technology, a possible climate backstop and (2) the effect of this technology on the value of liquid fuel reserves by country and fuel. Under most assumptions, development costs exceed individual benefits. A particularly robust result is that carbon prices generate large benefits for conventional oil producers--making a climate backstop unappealing for them. Unilateral investment does become more likely under: stringent carbon policy, social discount rates, improved technical outcomes, and high price elasticity of demand for liquid fuels. Early stage investment is inexpensive and could provide a hedge against such developments, particularly for fuels on the margin, such as tar sands and gas-to-liquids. Since only a few entities benefit, free riding is not an important disincentive to investment, although uncertainty about who benefits probably is.

Suggested Citation

  • Gregory F. Nemet and Adam R. Brandt, 2012. "Willingness to Pay for a Climate Backstop: Liquid Fuel Producers and Direct CO2 Air Capture," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  • Handle: RePEc:aen:journl:33-1-a03
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=2467
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel J.A. Johansson & Christian Azar & Kristian Lindgren & Tobias A. Persson, 2009. "OPEC Strategies and Oil Rent in a Climate Conscious World," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 23-50.
    2. James L. Smith, 2005. "Inscrutable OPEC? Behavioral Tests of the Cartel Hypothesis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 51-82.
    3. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    4. Gregory F. Nemet & Erin Baker, 2009. "Demand Subsidies Versus R&D: Comparing the Uncertain Impacts of Policy on a Pre-commercial Low-carbon Energy Technology," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 49-80.
    5. Rubin, Edward S. & Yeh, Sonia & Antes, Matt & Berkenpas, Michael & Davison, John, 2007. "Use of experience curves to estimate the future cost of power plants with CO2 capture," Institute of Transportation Studies, Working Paper Series qt46x6h0n0, Institute of Transportation Studies, UC Davis.
    6. Scott Barrett, 2009. "The Coming Global Climate-Technology Revolution," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 53-75, Spring.
    7. Considine, Timothy J. & Dalton, Maurice, 2008. "Peak Oil in a Carbon Constrained World," International Review of Environmental and Resource Economics, now publishers, vol. 1(4), pages 327-365, February.
    8. Karl E. Knapp, 1999. "Exploring Energy Technology Substitution for Reducing Atmospheric Carbon Emissions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 121-143.
    9. Brandt, Adam R. & Plevin, Richard J. & Farrell, Alexander E., 2010. "Dynamics of the oil transition: Modeling capacity, depletion, and emissions," Energy, Elsevier, vol. 35(7), pages 2852-2860.
    10. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    11. David Keith & Minh Ha-Duong & Joshua Stolaroff, 2006. "Climate strategy with CO2 capture from the air," Post-Print halshs-00003926, HAL.
    12. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
    13. Klaus S. Lackner & Jeffrey D. Sachs, 2005. "A Robust Strategy for Sustainable Energy," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 36(2), pages 215-284.
    14. Terry Barker and S. Serban Scrieciu, 2010. "Modeling Low Climate Stabilization with E3MG: Towards a 'New Economics' Approach to Simulating Energy-Environment-Economy System Dynamics," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gregory Nemet & Erin Baker & Bob Barron & Samuel Harms, 2015. "Characterizing the effects of policy instruments on the future costs of carbon capture for coal power plants," Climatic Change, Springer, vol. 133(2), pages 155-168, November.
    2. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    3. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:33-1-a03. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Williams). General contact details of provider: http://edirc.repec.org/data/iaeeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.