IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp291-301.html
   My bibliography  Save this article

The role of technology diffusion in a decarbonizing world to limit global warming to well below 2 °C: An assessment with application of Global TIMES model

Author

Listed:
  • Huang, Weilong
  • Chen, Wenying
  • Anandarajah, Gabrial

Abstract

Low-carbon power generation technologies such as wind, solar and carbon capture and storage are expected to play major roles in a decarbonized world. However, currently high cost may weaken the competitiveness of these technologies. One important cost reduction mechanism is the “learning by doing”, through which cumulative deployment results in technology costs decline. In this paper, a 14-region global energy system model (Global TIMES model) is applied to assess the impacts of technology diffusion on power generation portfolio and CO2 emission paths out to the year 2050. This analysis introduces three different technology learning approaches, namely standard endogenous learning, multiregional learning and multi-cluster learning. Four types of low-carbon power generation technologies (wind, solar, coal-fired and gas-fired CCS) undergo endogenous technology learning. The modelling results show that: (1) technology diffusion can effectively reduce the long-term abatement costs and the welfare losses caused by carbon emission mitigation; (2) from the perspective of global optimization, developed countries should take the lead in low-carbon technologies’ deployment; and (3) the establishment of an effective mechanism for technology diffusion across boundaries can enhance the capability and willingness of developing countries to cut down their CO2 emission.

Suggested Citation

  • Huang, Weilong & Chen, Wenying & Anandarajah, Gabrial, 2017. "The role of technology diffusion in a decarbonizing world to limit global warming to well below 2 °C: An assessment with application of Global TIMES model," Applied Energy, Elsevier, vol. 208(C), pages 291-301.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:291-301
    DOI: 10.1016/j.apenergy.2017.10.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917314538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:291-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.