IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920310837.html
   My bibliography  Save this article

Modeling China’s interprovincial electricity transmission under low carbon transition

Author

Listed:
  • Zhang, Qiang
  • Chen, Wenying

Abstract

Interprovincial electricity transmission is expected to play an important role towards low carbon transition to facilitate new and renewable energy development in West China to meet the increasing electricity demand in East China. To analyze changes in interprovincial electricity transmission and transmission infrastructure construction under China’s Nationally Determined Contributions and the 2-degree target, this study develops an interprovincial electricity transmission model with multi-voltage levels and integrates it with an improved 30-province energy system model to simulate reference scenario (REF) and three low carbon scenarios from a whole energy system perspective, CP30 (emissions peak in 2030), CPE (emissions peak in advance) and C2D (2-degree target). In 2050, electricity transmission is expected to increase to 2526.5 TWh, 3299.3 TWh, 3714.2 TWh and 4002.0 TWh under the REF, CP30, CPE and C2D scenarios, respectively, and the ultrahigh-voltage transmission demand is expected to reach 595.5 GW, 843.3 GW 917.0 GW and 1198.0 GW respectively. The overall pattern of electricity transmission will become increasingly complex as long-distance and large-capacity transmission becomes more prominent. Inner Mongolia, Northwest China and Southwest China will be the major sources of electricity transmissions, and the Beijing-Tianjin-Hebei region, Guangdong, Central China and East China will be the major importers. Ultrahigh-voltage lines will form large-capacity and long-distance electricity transmission paths connecting the power generation bases and load centers. These findings suggest that there will be a significant increase in the demand for electricity transmission and infrastructure construction in the future and that the policies promoting ultrahigh-voltage lines development should be enhanced.

Suggested Citation

  • Zhang, Qiang & Chen, Wenying, 2020. "Modeling China’s interprovincial electricity transmission under low carbon transition," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920310837
    DOI: 10.1016/j.apenergy.2020.115571
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920310837
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Say, Nuriye Peker & Yucel, Muzaffer, 2006. "Energy consumption and CO2 emissions in Turkey: Empirical analysis and future projection based on an economic growth," Energy Policy, Elsevier, vol. 34(18), pages 3870-3876, December.
    2. Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
    3. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2016. "Inter-regional power grid planning up to 2030 in China considering renewable energy development and regional pollutant control: A multi-region bottom-up optimization model," Applied Energy, Elsevier, vol. 184(C), pages 641-658.
    4. Michel Elzen & Angelica Beltran & Andries Hof & Bas Ruijven & Jasper Vliet, 2013. "Reduction targets and abatement costs of developing countries resulting from global and developed countries’ reduction targets by 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(4), pages 491-512, April.
    5. Chen, Wenying, 2005. "The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling," Energy Policy, Elsevier, vol. 33(7), pages 885-896, May.
    6. Boie, Inga & Kost, Christoph & Bohn, Sven & Agsten, Michael & Bretschneider, Peter & Snigovyi, Oleksandr & Pudlik, Martin & Ragwitz, Mario & Schlegl, Thomas & Westermann, Dirk, 2016. "Opportunities and challenges of high renewable energy deployment and electricity exchange for North Africa and Europe – Scenarios for power sector and transmission infrastructure in 2030 and 2050," Renewable Energy, Elsevier, vol. 87(P1), pages 130-144.
    7. Zhang, Yaru & Ma, Tieju & Guo, Fei, 2018. "A multi-regional energy transport and structure model for China’s electricity system," Energy, Elsevier, vol. 161(C), pages 907-919.
    8. Azadeh, A. & Tarverdian, S., 2007. "Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption," Energy Policy, Elsevier, vol. 35(10), pages 5229-5241, October.
    9. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    10. Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
    11. Chen, Wenying & Li, Hualin & Wu, Zongxin, 2010. "Western China energy development and west to east energy transfer: Application of the Western China Sustainable Energy Development Model," Energy Policy, Elsevier, vol. 38(11), pages 7106-7120, November.
    12. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    13. Chen, Wenying & Yin, Xiang & Ma, Ding, 2014. "A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 136(C), pages 1174-1183.
    14. Brancucci Martínez-Anido, C. & Vandenbergh, M. & de Vries, L. & Alecu, C. & Purvins, A. & Fulli, G. & Huld, T., 2013. "Medium-term demand for European cross-border electricity transmission capacity," Energy Policy, Elsevier, vol. 61(C), pages 207-222.
    15. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    16. Li, Nan & Chen, Wenying, 2018. "Modeling China’s interprovincial coal transportation under low carbon transition," Applied Energy, Elsevier, vol. 222(C), pages 267-279.
    17. Wang, Ge & Zhang, Qi & Mclellan, Benjamin C. & Li, Hailong, 2016. "Multi-region optimal deployment of renewable energy considering different interregional transmission scenarios," Energy, Elsevier, vol. 108(C), pages 108-118.
    18. Yin, Xiang & Chen, Wenying, 2013. "Trends and development of steel demand in China: A bottom–up analysis," Resources Policy, Elsevier, vol. 38(4), pages 407-415.
    19. Chen, Wenying & Wu, Zongxin & He, Jiankun & Gao, Pengfei & Xu, Shaofeng, 2007. "Carbon emission control strategies for China: A comparative study with partial and general equilibrium versions of the China MARKAL model," Energy, Elsevier, vol. 32(1), pages 59-72.
    20. Jayadev, Gopika & Leibowicz, Benjamin D. & Kutanoglu, Erhan, 2020. "U.S. electricity infrastructure of the future: Generation and transmission pathways through 2050," Applied Energy, Elsevier, vol. 260(C).
    21. Lining Wang & Wenying Chen & Hongjun Zhang & Ding Ma, 2017. "Dynamic equity carbon permit allocation scheme to limit global warming to two degrees," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(4), pages 609-628, April.
    22. Cheng, Rui & Xu, Zhaofeng & Liu, Pei & Wang, Zhe & Li, Zheng & Jones, Ian, 2015. "A multi-region optimization planning model for China’s power sector," Applied Energy, Elsevier, vol. 137(C), pages 413-426.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Benxi & Liu, Tengyuan & Liao, Shengli & Lu, Jia & Cheng, Chuntian, 2023. "Short-term coordinated hybrid hydro-wind-solar optimal scheduling model considering multistage section restrictions," Renewable Energy, Elsevier, vol. 217(C).
    2. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
    3. Jia, Zhijie & Wen, Shiyan & Wang, Yao, 2023. "Power coming from the sky: Economic benefits of inter-regional power transmission in China," Energy Economics, Elsevier, vol. 119(C).
    4. Yu, Zhongjue & Geng, Yong & Calzadilla, Alvaro & Bleischwitz, Raimund, 2022. "China's unconventional carbon emissions trading market: The impact of a rate-based cap in the power generation sector," Energy, Elsevier, vol. 255(C).
    5. Qiu, Shuo & Lei, Tian & Wu, Jiangtao & Bi, Shengshan, 2021. "Energy demand and supply planning of China through 2060," Energy, Elsevier, vol. 234(C).
    6. Jin, Jingliang & Wen, Qinglan & Cheng, Siqi & Qiu, Yaru & Zhang, Xianyue & Guo, Xiaojun, 2022. "Optimization of carbon emission reduction paths in the low-carbon power dispatching process," Renewable Energy, Elsevier, vol. 188(C), pages 425-436.
    7. Liu, Zhengguang & Guo, Zhiling & Song, Chenchen & Du, Ying & Chen, Qi & Chen, Yuntian & Zhang, Haoran, 2023. "Business model comparison of slum-based PV to realize low-cost and flexible power generation in city-level," Applied Energy, Elsevier, vol. 344(C).
    8. Feng Liu & Tao Lv & Yuan Meng & Xiaoran Hou & Jie Xu & Xu Deng, 2022. "Low-Carbon Transition Paths of Coal Power in China’s Provinces under the Context of the Carbon Trading Scheme," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    9. Yang, Yan-Shen & Xie, Bai-Chen & Tan, Xu, 2024. "Impact of green power trading mechanism on power generation and interregional transmission in China," Energy Policy, Elsevier, vol. 189(C).
    10. Zhang, Changbing & Cao, Wenzhe & Xie, Tingting & Wang, Chongxun & Shen, Chunhe & Wen, Xiankui & Mao, Cheng, 2022. "Operational characteristics and optimization of Hydro-PV power hybrid electricity system," Renewable Energy, Elsevier, vol. 200(C), pages 601-613.
    11. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
    12. Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin & Ai, Zisheng & Zheng, Hongyuan & Liu, Runxi, 2021. "Evaluating the energy efficiency of wastewater treatment plants in the Yangtze River Delta: Perspectives on regional discrepancies," Applied Energy, Elsevier, vol. 297(C).
    13. Huaibo Yang & Chao Shi & Jianbo Li & Tianran Liu & Youwei Li & Yao Wang & Yueying Yang, 2022. "Has the Inter-Regional Power Transmission Promoted Economic Development? A Quantitative Assessment in China," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    14. Zhenyu Zhuo & Ershun Du & Ning Zhang & Chris P. Nielsen & Xi Lu & Jinyu Xiao & Jiawei Wu & Chongqing Kang, 2022. "Cost increase in the electricity supply to achieve carbon neutrality in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Zhang, Chongchong & Cai, Xiangyu & Lin, Boqiang, 2023. "The low-carbon transition of China's power sector: Scale effect of grid upgrading," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Nan & Chen, Wenying, 2018. "Modeling China’s interprovincial coal transportation under low carbon transition," Applied Energy, Elsevier, vol. 222(C), pages 267-279.
    2. Huan Wang & Wenying Chen & Hongjun Zhang & Nan Li, 2020. "Modeling of power sector decarbonization in China: comparisons of early and delayed mitigation towards 2-degree target," Climatic Change, Springer, vol. 162(4), pages 1843-1856, October.
    3. Wang, Huan & Chen, Wenying & Shi, Jingcheng, 2018. "Low carbon transition of global building sector under 2- and 1.5-degree targets," Applied Energy, Elsevier, vol. 222(C), pages 148-157.
    4. Li, Nan & Chen, Wenying, 2019. "Energy-water nexus in China's energy bases: From the Paris agreement to the Well Below 2 Degrees target," Energy, Elsevier, vol. 166(C), pages 277-286.
    5. Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).
    6. Wang, Huan & Chen, Wenying, 2019. "Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe," Applied Energy, Elsevier, vol. 238(C), pages 1563-1572.
    7. Huang, Weilong & Chen, Wenying & Anandarajah, Gabrial, 2017. "The role of technology diffusion in a decarbonizing world to limit global warming to well below 2 °C: An assessment with application of Global TIMES model," Applied Energy, Elsevier, vol. 208(C), pages 291-301.
    8. Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
    9. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    10. Huang, Weilong & Ma, Ding & Chen, Wenying, 2017. "Connecting water and energy: Assessing the impacts of carbon and water constraints on China’s power sector," Applied Energy, Elsevier, vol. 185(P2), pages 1497-1505.
    11. Wang, Huan & Chen, Wenying, 2019. "Modeling of energy transformation pathways under current policies, NDCs and enhanced NDCs to achieve 2-degree target," Applied Energy, Elsevier, vol. 250(C), pages 549-557.
    12. Sun, Liang & Chen, Wenying, 2017. "Development and application of a multi-stage CCUS source–sink matching model," Applied Energy, Elsevier, vol. 185(P2), pages 1424-1432.
    13. Li, Nan & Chen, Wenying & Zhang, Qiang, 2020. "Development of China TIMES-30P model and its application to model China's provincial low carbon transformation," Energy Economics, Elsevier, vol. 92(C).
    14. Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
    15. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    16. Yang, Xi & Pang, Jun & Teng, Fei & Gong, Ruixin & Springer, Cecilia, 2021. "The environmental co-benefit and economic impact of China's low-carbon pathways: Evidence from linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    17. Liu, Xi & Du, Huibin & Brown, Marilyn A. & Zuo, Jian & Zhang, Ning & Rong, Qian & Mao, Guozhu, 2018. "Low-carbon technology diffusion in the decarbonization of the power sector: Policy implications," Energy Policy, Elsevier, vol. 116(C), pages 344-356.
    18. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Jiang, Bo & Kong, Xue, 2019. "Optimization of electricity generation and interprovincial trading strategies in Southern China," Energy, Elsevier, vol. 174(C), pages 696-707.
    19. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    20. Jia, Zhijie & Wen, Shiyan & Wang, Yao, 2023. "Power coming from the sky: Economic benefits of inter-regional power transmission in China," Energy Economics, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920310837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.