IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v38y2013i4p407-415.html
   My bibliography  Save this article

Trends and development of steel demand in China: A bottom–up analysis

Author

Listed:
  • Yin, Xiang
  • Chen, Wenying

Abstract

With economic development, the Chinese steel industry has rapidly expanded over the past three decades. However, this expansion has resulted in many problems, such as increasing energy consumption and excessive environmental pollution. Therefore, it is important to analyze the future steel demand in China. This study presents changes in steel production and apparent steel consumption in the years 1998–2010. Steel is mainly consumed by construction, machinery, automobiles, shipbuilding, railways, petroleum, household appliances and containers, and these nine industries are analyzed separately using stock based models. The study suggests steel demand in China will rise from 600milliont in 2010 to a peak of 753milliont in 2025, and then gradually decrease to 510milliont in 2050. The construction industry is the largest steel consumer, although its share of total steel demand will decrease in the future. Steel demand in automobile manufacturing, by contrast, will increase rapidly before 2035, and its share will increase from 6.0% in 2010 to 19.0% in 2050. Sensitivity analysis on the four major impact factors such as saturation levels, lifetime distributions, GDP and urbanization rate shows that saturation levels of different products greatly affect long-term and short-term steel demands, while GDP and lifetime distributions, especially the lifetime distribution of buildings, mainly affect the short-term and long-term steel demands, respectively.

Suggested Citation

  • Yin, Xiang & Chen, Wenying, 2013. "Trends and development of steel demand in China: A bottom–up analysis," Resources Policy, Elsevier, vol. 38(4), pages 407-415.
  • Handle: RePEc:eee:jrpoli:v:38:y:2013:i:4:p:407-415
    DOI: 10.1016/j.resourpol.2013.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420713000482
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crompton, Paul, 1999. "Forecasting steel consumption in South-East Asia," Resources Policy, Elsevier, vol. 25(2), pages 111-123, June.
    2. Crompton, Paul, 2000. "Future trends in Japanese steel consumption," Resources Policy, Elsevier, vol. 26(2), pages 103-114, June.
    3. Leon Berkelmans & Hao Wang, 2012. "Chinese Urban Residential Construction to 2040," RBA Research Discussion Papers rdp2012-04, Reserve Bank of Australia.
    4. Paul Crompton & Yanrui Wu, 2003. "Bayesian Vector Autoregression Forecasts of Chinese Steel Consumption," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 1(2), pages 205-219.
    5. Chen, Dongling & Clements, Kenneth W. & Roberts, E. John & Weber, E. Juerg, 1991. "Forecasting steel demand in China," Resources Policy, Elsevier, vol. 17(3), pages 196-210, September.
    6. Huo, Hong & Wang, Michael, 2012. "Modeling future vehicle sales and stock in China," Energy Policy, Elsevier, vol. 43(C), pages 17-29.
    7. Johansson, Daniel J. A. & Lucas, Paul L. & Weitzel, Matthias & Ahlgren, Erik O. & Bazaz, A. B. & Chen, Wenying & den Elzen, Michel G. J. & Ghosh, Joydeep & Grahn, Maria & Liang, Qiao-Mei & Peterson, S, 2012. "Multi-model analyses of the economic and energy implications for China and India in a post-Kyoto climate regime," Kiel Working Papers 1808, Kiel Institute for the World Economy (IfW).
    8. Fu, Feng & Pan, Lingying & Ma, Linwei & Li, Zheng, 2013. "A simplified method to estimate the energy-saving potentials of frequent construction and demolition process in China," Energy, Elsevier, vol. 49(C), pages 316-322.
    9. Zhou, Nan & Fridley, David & McNeil, Michael & Zheng, Nina & Letschert, Virginie & Ke, Jing & Saheb, Yamina, 2011. "Analysis of potential energy saving and CO2 emission reduction of home appliances and commercial equipments in China," Energy Policy, Elsevier, vol. 39(8), pages 4541-4550, August.
    10. Rebiasz, Bogdan, 2006. "Polish steel consumption, 1974-2008," Resources Policy, Elsevier, vol. 31(1), pages 37-49, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    2. repec:eee:appene:v:209:y:2018:i:c:p:251-265 is not listed on IDEAS
    3. Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
    4. Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
    5. Chen, Wenying & Yin, Xiang & Ma, Ding, 2014. "A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 136(C), pages 1174-1183.
    6. Choi, Tsan-Ming, 2015. "Sustainable management of mining operations with accidents: A mean-variance optimization model," Resources Policy, Elsevier, vol. 46(P1), pages 116-122.
    7. Wu, Jinxi & Yang, Jie & Ma, Linwei & Li, Zheng & Shen, Xuesi, 2016. "A system analysis of the development strategy of iron ore in China," Resources Policy, Elsevier, vol. 48(C), pages 32-40.
    8. Zhou, Kaile & Yang, Shanlin, 2016. "Emission reduction of China׳s steel industry: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 319-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:38:y:2013:i:4:p:407-415. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.