IDEAS home Printed from https://ideas.repec.org/p/zbw/vfsc18/181518.html
   My bibliography  Save this paper

What drives updates of inflation expectations? A Bayesian VAR analysis for the G-7 countries

Author

Listed:
  • Belke, Ansgar
  • Beckmann, Joscha
  • Dubova, Irina

Abstract

Inflation expectations play a crucial role for monetary policy transmission, having become even more important since the emergence of unconventional monetary policy. Based on survey data provided by Consensus Economics, we assess determinants of professional inflation expectations for the G7 economies. We emphasize the role of international spillovers in inflation expectations stemming from monetary policy decisions in the US. We also consider several possible determinants, such as changes in the path of monetary policy, oil price shocks and uncertainty measures. Based on a Bayesian VAR, we find significant evidence for international spillovers stemming from expectations about US monetary policy based on impulse-response functions and forecast error decompositions. We also provide similar evidence on spillovers from the dispersion across inflation forecasts.

Suggested Citation

  • Belke, Ansgar & Beckmann, Joscha & Dubova, Irina, 2018. "What drives updates of inflation expectations? A Bayesian VAR analysis for the G-7 countries," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181518, Verein für Socialpolitik / German Economic Association.
  • Handle: RePEc:zbw:vfsc18:181518
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/181518/1/VfS-2018-pid-12549.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    2. Robert J. Barro & David B. Gordon, 2019. "A Positive Theory of Monetary Policy in a Natural Rate Model," Credit and Capital Markets, Credit and Capital Markets, vol. 52(4), pages 505-525.
    3. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    4. K. Istrefi & A. Piloiu, 2016. "Economic policy uncertainty and inflation expectations," Rue de la Banque, Banque de France, issue 33, november..
    5. Martin Cerisola & Gaston Gelos, 2009. "What drives inflation expectations in Brazil? An empirical analysis," Applied Economics, Taylor & Francis Journals, vol. 41(10), pages 1215-1227.
    6. Jing Cynthia Wu & Fan Dora Xia, 2016. "Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 253-291, March.
    7. Jonas Dovern & Ulrich Fritsche & Jiri Slacalek, 2012. "Disagreement Among Forecasters in G7 Countries," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1081-1096, November.
    8. Taylor, John B., 2013. "International monetary coordination and the great deviation," Journal of Policy Modeling, Elsevier, vol. 35(3), pages 463-472.
    9. Belke, Ansgar & Orth, Walter & Setzer, Ralph, 2010. "Liquidity and the dynamic pattern of asset price adjustment: A global view," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1933-1945, August.
    10. Aaron Mehrotra & James Yetman, 2014. "How anchored are inflation expectations in Asia? Evidence from surveys of professional forecasters," BIS Papers chapters, in: Bank for International Settlements (ed.), Globalisation, inflation and monetary policy in Asia and the Pacific, volume 77, pages 181-191, Bank for International Settlements.
    11. Ricardo Reis, 2006. "Inattentive Producers," Review of Economic Studies, Oxford University Press, vol. 73(3), pages 793-821.
    12. Neely, Christopher J., 2015. "Unconventional monetary policy had large international effects," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 101-111.
    13. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    14. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    15. Haldane, Andrew & Roberts-Sklar, Matt & Wieladek, Tomasz & Young, Chris, 2016. "QE: the story so far," CEPR Discussion Papers 11691, C.E.P.R. Discussion Papers.
    16. Beckmann, Joscha & Belke, Ansgar & Czudaj, Robert, 2014. "Does global liquidity drive commodity prices?," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 224-234.
    17. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, April.
    18. Neely, Christopher J. & Rapach, David E., 2011. "International comovements in inflation rates and country characteristics," Journal of International Money and Finance, Elsevier, vol. 30(7), pages 1471-1490.
    19. Patton, Andrew J. & Timmermann, Allan, 2010. "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 803-820, October.
    20. Haroon Mumtaz & Paolo Surico, 2012. "Evolving International Inflation Dynamics: World And Country-Specific Factors," Journal of the European Economic Association, European Economic Association, vol. 10(4), pages 716-734, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joscha Beckmann & Robert L. Czudaj, 2018. "Monetary Policy Shocks, Expectations, And Information Rigidities," Economic Inquiry, Western Economic Association International, vol. 56(4), pages 2158-2176, October.
    2. Joscha Beckmann & Robert L. Czudaj, 2020. "Professional forecasters' expectations, consistency, and international spillovers," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1001-1024, November.
    3. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    4. Ambrocio, Gene, 2017. "The real effects of overconfidence and fundamental uncertainty shocks," Research Discussion Papers 37/2017, Bank of Finland.
    5. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    6. Paul Hubert, 2014. "FOMC Forecasts as a Focal Point for Private Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(7), pages 1381-1420, October.
    7. Kim, Insu & Kim, Young Se, 2019. "Inattentive agents and inflation forecast error dynamics: A Bayesian DSGE approach," Journal of Macroeconomics, Elsevier, vol. 62(C).
    8. Ricco, Giovanni & Callegari, Giovanni & Cimadomo, Jacopo, 2016. "Signals from the government: Policy disagreement and the transmission of fiscal shocks," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 107-118.
    9. Clements, Michael P., 2021. "Do survey joiners and leavers differ from regular participants? The US SPF GDP growth and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 37(2), pages 634-646.
    10. Dovern, Jonas & Fritsche, Ulrich & Loungani, Prakash & Tamirisa, Natalia, 2015. "Information rigidities: Comparing average and individual forecasts for a large international panel," International Journal of Forecasting, Elsevier, vol. 31(1), pages 144-154.
    11. Nolte, Ingmar & Nolte, Sandra & Pohlmeier, Winfried, 2019. "What determines forecasters’ forecasting errors?," International Journal of Forecasting, Elsevier, vol. 35(1), pages 11-24.
    12. Angeletos, G.-M. & Lian, C., 2016. "Incomplete Information in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1065-1240, Elsevier.
    13. Beckmann, Joscha & Czudaj, Robert, 2017. "Exchange rate expectations since the financial crisis: Performance evaluation and the role of monetary policy and safe haven," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 283-300.
    14. James M. Nason & Gregor W. Smith, 2013. "Reverse Kalman filtering U.S. inflation with sticky professional forecasts," Working Papers 13-34, Federal Reserve Bank of Philadelphia.
    15. Richard K. Crump & Stefano Eusepi & Emanuel Moench, 2016. "The term structure of expectations and bond yields," Staff Reports 775, Federal Reserve Bank of New York.
    16. Dovern, Jonas, 2015. "A multivariate analysis of forecast disagreement: Confronting models of disagreement with survey data," European Economic Review, Elsevier, vol. 80(C), pages 16-35.
    17. Andrade, Philippe & Crump, Richard K. & Eusepi, Stefano & Moench, Emanuel, 2016. "Fundamental disagreement," Journal of Monetary Economics, Elsevier, vol. 83(C), pages 106-128.
    18. Yara de Almeida Campos Cordeiro & Wagner Piazza Gaglianone & João Victor Issler, 2017. "Inattention in individual expectations," Economia, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics], vol. 17(1), pages 40-59.
    19. Wagner Piazza Gaglianone, 2017. "Empirical Findings on Inflation Expectations in Brazil: a survey," Working Papers Series 464, Central Bank of Brazil, Research Department.
    20. Andrade, Philippe & Le Bihan, Hervé, 2013. "Inattentive professional forecasters," Journal of Monetary Economics, Elsevier, vol. 60(8), pages 967-982.

    More about this item

    Keywords

    Bayesian VAR; expectations; inflation; survey data; updating;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:vfsc18:181518. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfsocea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vfsocea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.