IDEAS home Printed from https://ideas.repec.org/p/wuu/wpaper/hsc1509.html
   My bibliography  Save this paper

Two faces of word-of-mouth: Understanding the impact of social interactions on demand curves for innovative products

Author

Listed:
  • Katarzyna Maciejowska
  • Arkadiusz Jedrzejewski
  • Anna Kowalska-Pyzalska
  • Katarzyna Sznajd-Weron
  • Rafal Weron

Abstract

Word-of-mouth (WOM) is a puzzling phenomenon. It strongly influences the innovation diffusion process and is responsible for the 'S' shape of the adoption curve. However, it is not clear how WOM affects demand curves for innovative products and strategic decisions of producers. In this paper, we build an agent-based model of innovation diffusion, which links the opinions of potential consumers with their market behavior via the concept of reservation prices. We show that when reversibility of opinions is allowed, WOM may have either a positive or a negative effect on the adoption process, depending on the model parameters and the level of market prices. Our results suggest that a relatively strong WOM effect can lead to the creation of two separated price-quantity regimes, with a nonlinear transition between them. A small shift of the market price can result in a drastic change of the demanded quantity and, hence, the revenues of a firm. Using Monte Carlo simulations and mean-field (semi-)analytical treatment we demonstrate that WOM may have ambiguous consequences and should be taken into account when designing marketing strategies.

Suggested Citation

  • Katarzyna Maciejowska & Arkadiusz Jedrzejewski & Anna Kowalska-Pyzalska & Katarzyna Sznajd-Weron & Rafal Weron, 2015. "Two faces of word-of-mouth: Understanding the impact of social interactions on demand curves for innovative products," HSC Research Reports HSC/15/09, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
  • Handle: RePEc:wuu:wpaper:hsc1509
    as

    Download full text from publisher

    File URL: http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_15_09.pdf
    File Function: Original version, 2015
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. In Cho, 2015. "Facebook discontinuance: discontinuance as a temporal settlement of the constant interplay between disturbance and coping," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1531-1548, July.
    2. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    3. Goldenberg, Jacob & Libai, Barak & Muller, Eitan, 2010. "The chilling effects of network externalities," International Journal of Research in Marketing, Elsevier, vol. 27(1), pages 4-15.
    4. Katarzyna Sznajd-Weron & Janusz Szwabiński & Rafał Weron, 2014. "Is the Person-Situation Debate Important for Agent-Based Modeling and Vice-Versa?," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-7, November.
    5. East, Robert & Hammond, Kathy & Lomax, Wendy, 2008. "Measuring the impact of positive and negative word of mouth on brand purchase probability," International Journal of Research in Marketing, Elsevier, vol. 25(3), pages 215-224.
    6. Arthur Campbell, 2013. "Word-of-Mouth Communication and Percolation in Social Networks," American Economic Review, American Economic Association, vol. 103(6), pages 2466-2498, October.
    7. Stummer, Christian & Kiesling, Elmar & Günther, Markus & Vetschera, Rudolf, 2015. "Innovation diffusion of repeat purchase products in a competitive market: An agent-based simulation approach," European Journal of Operational Research, Elsevier, vol. 245(1), pages 157-167.
    8. Paolo Zeppini & Koen Frenken & Luis R. Izquierdo, 2013. "Innovation diffusion in networks: the microeconomics of percolation," Working Papers 13-02, Eindhoven Center for Innovation Studies, revised Feb 2013.
    9. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    10. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    11. Cabral, Luis M. B. & Salant, David J. & Woroch, Glenn A., 1999. "Monopoly pricing with network externalities," International Journal of Industrial Organization, Elsevier, vol. 17(2), pages 199-214, February.
    12. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    13. Piotr Przybyła & Katarzyna Sznajd-Weron & Rafał Weron, 2014. "Diffusion Of Innovation Within An Agent-Based Model: Spinsons, Independence And Advertising," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-22.
    14. Martin Hohnisch & Sabine Pittnauer & Dietrich Stauffer, 2008. "A percolation-based model explaining delayed takeoff in new-product diffusion," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(5), pages 1001-1017, October.
    15. Martin Spann & Marc Fischer & Gerard J. Tellis, 2015. "Skimming or Penetration? Strategic Dynamic Pricing for New Products," Marketing Science, INFORMS, vol. 34(2), pages 235-249, March.
    16. Trichy V. Krishnan & Frank M. Bass & Dipak C. Jain, 1999. "Optimal Pricing Strategy for New Products," Management Science, INFORMS, vol. 45(12), pages 1650-1663, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexei Parakhonyak & Nick Vikander, 2019. "Optimal Sales Schemes for Network Goods," Management Science, INFORMS, vol. 65(2), pages 819-841, February.
    2. Herbert Dawid & Reinhold Decker & Thomas Hermann & Hermann Jahnke & Wilhelm Klat & Rolf König & Christian Stummer, 2017. "Management science in the era of smart consumer products: challenges and research perspectives," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 203-230, March.
    3. Ashkan Negahban & Jeffrey S. Smith, 2018. "A joint analysis of production and seeding strategies for new products: an agent-based simulation approach," Annals of Operations Research, Springer, vol. 268(1), pages 41-62, September.
    4. Chaab, Jafar & Zaccour, Georges, 2024. "Dynamic pricing in the presence of social externalities and reference-price effect," Omega, Elsevier, vol. 122(C).
    5. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    6. Nejad, Mohammad G. & Amini, Mehdi & Babakus, Emin, 2015. "Success Factors in Product Seeding: The Role of Homophily," Journal of Retailing, Elsevier, vol. 91(1), pages 68-88.
    7. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2018. "IRPsim: A techno-socio-economic energy system model vision for business strategy assessment at municipal level," Contributions of the Institute for Infrastructure and Resources Management 02/2018, University of Leipzig, Institute for Infrastructure and Resources Management.
    8. Shi, Xiaohui & Chumnumpan, Pattarin, 2019. "Modelling market dynamics of multi-brand and multi-generational products," European Journal of Operational Research, Elsevier, vol. 279(1), pages 199-210.
    9. Mohammad G Nejad & Sertan Kabadayi, 2016. "Optimal introductory pricing for new financial services," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 21(1), pages 34-50, March.
    10. Katarzyna Byrka & Arkadiusz Jedrzejewski & Katarzyna Sznajd-Weron & Rafal Weron, 2015. "Difficulty is critical: Psychological factors in modeling diffusion of green products and practices," HSC Research Reports HSC/15/10, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    11. Nejad, Mohammad G. & Amini, Mehdi & Sherrell, Daniel L., 2016. "The profit impact of revenue heterogeneity and assortativity in the presence of negative word-of-mouth," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 656-673.
    12. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2019. "A review of designing empirically grounded agent-based models of innovation diffusion: Development process, conceptual foundation and research agenda," Contributions of the Institute for Infrastructure and Resources Management 01/2019, University of Leipzig, Institute for Infrastructure and Resources Management.
    13. Muller, Eitan & Peres, Renana, 2019. "The effect of social networks structure on innovation performance: A review and directions for research," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 3-19.
    14. Chandrasekaran, Deepa & Arts, Joep W.C. & Tellis, Gerard J. & Frambach, Ruud T., 2013. "Pricing in the international takeoff of new products," International Journal of Research in Marketing, Elsevier, vol. 30(3), pages 249-264.
    15. Xiao, Yu & Han, Jingti, 2016. "Forecasting new product diffusion with agent-based models," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 167-178.
    16. Shi, Yingying & Zeng, Yongchao & Engo, Jean & Han, Botang & Li, Yang & Muehleisen, Ralph T., 2020. "Leveraging inter-firm influence in the diffusion of energy efficiency technologies: An agent-based model," Applied Energy, Elsevier, vol. 263(C).
    17. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    18. William Rand & Christian Stummer, 2021. "Agent‐based modeling of new product market diffusion: an overview of strengths and criticisms," Annals of Operations Research, Springer, vol. 305(1), pages 425-447, October.
    19. Lim, Hyungsoo & Jun, Duk Bin & Hamoudia, Mohsen, 2019. "A choice-based diffusion model for multi-generation and multi-country data," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 163-173.
    20. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.

    More about this item

    Keywords

    Word-of-mouth; Innovation diffusion; Agent-based model; Demand curve; Marketing strategy;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc1509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rafal Weron (email available below). General contact details of provider: https://edirc.repec.org/data/hspwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.