IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v279y2019i1p199-210.html
   My bibliography  Save this article

Modelling market dynamics of multi-brand and multi-generational products

Author

Listed:
  • Shi, Xiaohui
  • Chumnumpan, Pattarin

Abstract

This research develops a new product diffusion model for a product category that involves multiple brands and multiple generations. We examine our proposed model's validity through the case of Japanese mobile telecommunications services. In this product category, the model and its results give evidence of the coexistence of brand competition and generation substitution and show the importance of considering the two influences simultaneously. It also enables the analysis of both these influences to the end of gaining additional insights into the process of new product growth. The model proves reliable in forecasting both the overall market dynamics of a product category and the market performance of the individual brands and generations that belong to it.

Suggested Citation

  • Shi, Xiaohui & Chumnumpan, Pattarin, 2019. "Modelling market dynamics of multi-brand and multi-generational products," European Journal of Operational Research, Elsevier, vol. 279(1), pages 199-210.
  • Handle: RePEc:eee:ejores:v:279:y:2019:i:1:p:199-210
    DOI: 10.1016/j.ejor.2019.05.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719304473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.05.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John A. Norton & Frank M. Bass, 1987. "A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products," Management Science, INFORMS, vol. 33(9), pages 1069-1086, September.
    2. Feng, Lin & Chan, Ya-Lan, 2019. "Joint pricing and production decisions for new products with learning curve effects under upstream and downstream trade credits," European Journal of Operational Research, Elsevier, vol. 272(3), pages 905-913.
    3. F-M Tseng, 2008. "Quadratic interval innovation diffusion models for new product sales forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1120-1127, August.
    4. Yan, Hong-Sen & Ma, Kai-Ping, 2011. "Competitive diffusion process of repurchased products in knowledgeable manufacturing," European Journal of Operational Research, Elsevier, vol. 208(3), pages 243-252, February.
    5. Fang-Mei Tseng, 2008. "Quadratic-Interval Innovation Diffusion Models for New Product Sales Forecasting," World Scientific Book Chapters, in: Mostafa Hashem Sherif & Tarek M Khalil (ed.), Management Of Technology Innovation And Value Creation Selected Papers from the 16th International Conference on Management of Technology, chapter 25, pages 415-433, World Scientific Publishing Co. Pte. Ltd..
    6. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    7. Zhiling Guo & Jianqing Chen, 2018. "Multigeneration Product Diffusion in the Presence of Strategic Consumers," Information Systems Research, INFORMS, vol. 29(1), pages 206-224, March.
    8. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    9. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    10. Samuel Sale, R. & Mesak, Hani I. & Inman, R. Anthony, 2017. "A dynamic marketing-operations interface model of new product updates," European Journal of Operational Research, Elsevier, vol. 257(1), pages 233-242.
    11. Rajkumar Venkatesan & Trichy V. Krishnan & V. Kumar, 2004. "Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Nonlinear Least Squares," Marketing Science, INFORMS, vol. 23(3), pages 451-464, August.
    12. Tsai, Bi-Huei, 2013. "Predicting the diffusion of LCD TVs by incorporating price in the extended Gompertz model," Technological Forecasting and Social Change, Elsevier, vol. 80(1), pages 106-131.
    13. Stefan Stremersch & Eitan Muller & Renana Peres, 2010. "Does new product growth accelerate across technology generations?," Marketing Letters, Springer, vol. 21(2), pages 103-120, June.
    14. B Aytac & S D Wu, 2011. "Modelling high-tech product life cycles with short-term demand information: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 425-432, March.
    15. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    16. Paulo Albuquerque & Bart J. Bronnenberg & Charles J. Corbett, 2007. "A Spatiotemporal Analysis of the Global Diffusion of ISO 9000 and ISO 14000 Certification," Management Science, INFORMS, vol. 53(3), pages 451-468, March.
    17. Kreng, Victor B. & Wang, Bang Jyun, 2013. "An innovation diffusion of successive generations by system dynamics — An empirical study of Nike Golf Company," Technological Forecasting and Social Change, Elsevier, vol. 80(1), pages 77-87.
    18. Stummer, Christian & Kiesling, Elmar & Günther, Markus & Vetschera, Rudolf, 2015. "Innovation diffusion of repeat purchase products in a competitive market: An agent-based simulation approach," European Journal of Operational Research, Elsevier, vol. 245(1), pages 157-167.
    19. Sergei Savin & Christian Terwiesch, 2005. "Optimal Product Launch Times in a Duopoly: Balancing Life-Cycle Revenues with Product Cost," Operations Research, INFORMS, vol. 53(1), pages 26-47, February.
    20. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    21. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    22. Guseo, Renato & Mortarino, Cinzia, 2012. "Sequential market entries and competition modelling in multi-innovation diffusions," European Journal of Operational Research, Elsevier, vol. 216(3), pages 658-667.
    23. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    24. Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
    25. Zhengrui Jiang & Dipak C. Jain, 2012. "A Generalized Norton-Bass Model for Multigeneration Diffusion," Management Science, INFORMS, vol. 58(10), pages 1887-1897, October.
    26. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    27. van Oorschot, Johannes A.W.H. & Hofman, Erwin & Halman, Johannes I.M., 2018. "A bibliometric review of the innovation adoption literature," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 1-21.
    28. Namwoon Kim & Dae Ryun Chang & Allan D. Shocker, 2000. "Modeling Intercategory and Generational Dynamics for A Growing Information Technology Industry," Management Science, INFORMS, vol. 46(4), pages 496-512, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2021. "Predicting diffusion dynamics and launch time strategy for mobile telecommunication services: an empirical analysis," Information Technology and Management, Springer, vol. 22(1), pages 33-51, March.
    2. Liu, Jiawei & Ding, Jie, 2020. "Requesting for retweeting or donating? A research on how the fundraiser seeks help in the social charitable crowdfunding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    3. Bo Tan & Zhiguo Zhu & Pan Jiang & Xiening Wang, 2023. "Modeling Multi-Generation Product Diffusion in the Context of Dual-Brand Competition and Sustainable Improvement," Sustainability, MDPI, vol. 15(17), pages 1-22, August.
    4. Lixin Zhou & Jie Lin & Yanfeng Li & Zhenyu Zhang, 2020. "Innovation Diffusion of Mobile Applications in Social Networks: A Multi-Agent System," Sustainability, MDPI, vol. 12(7), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    2. Shi, Xiaohui & Li, Feng & Bigdeli, Ali Ziaee, 2016. "An examination of NPD models in the context of business models," Journal of Business Research, Elsevier, vol. 69(7), pages 2541-2550.
    3. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    4. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2021. "Technology diffusion model with change in adoption rate and repeat purchases: a case of consumer balking," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(1), pages 29-36, February.
    5. Claudia Furlan & Cinzia Mortarino & Mohammad Salim Zahangir, 2021. "Interaction among three substitute products: an extended innovation diffusion model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 269-293, March.
    6. Guidolin, Mariangela & Guseo, Renato, 2015. "Technological change in the U.S. music industry: Within-product, cross-product and churn effects between competing blockbusters," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 35-46.
    7. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    8. Herbert Dawid & Reinhold Decker & Thomas Hermann & Hermann Jahnke & Wilhelm Klat & Rolf König & Christian Stummer, 2017. "Management science in the era of smart consumer products: challenges and research perspectives," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 203-230, March.
    9. Ghobadi, Somayeh Najafi- & Bagherinejad, Jafar & Taleizadeh, Ata Allah, 2021. "A two-generation new product model by considering forward-looking customers: Dynamic pricing and advertising optimization," Journal of Retailing and Consumer Services, Elsevier, vol. 63(C).
    10. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    11. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2021. "Predicting diffusion dynamics and launch time strategy for mobile telecommunication services: an empirical analysis," Information Technology and Management, Springer, vol. 22(1), pages 33-51, March.
    12. Guseo, Renato & Mortarino, Cinzia & Darda, Md Abud, 2015. "Homogeneous and heterogeneous diffusion models: Algerian natural gas production," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 366-378.
    13. Hongmin Li & Dieter Armbruster & Karl G. Kempf, 2013. "A Population-Growth Model for Multiple Generations of Technology Products," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 343-360, July.
    14. Samuel Sale, R. & Mesak, Hani I. & Inman, R. Anthony, 2017. "A dynamic marketing-operations interface model of new product updates," European Journal of Operational Research, Elsevier, vol. 257(1), pages 233-242.
    15. Xiao, Yu & Han, Jingti, 2016. "Forecasting new product diffusion with agent-based models," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 167-178.
    16. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    17. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    18. Guseo, Renato & Schuster, Reinhard, 2021. "Modelling dynamic market potential: Identifying hidden automata networks in the diffusion of pharmaceutical drugs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    19. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    20. Bo Tan & Zhiguo Zhu & Pan Jiang & Xiening Wang, 2023. "Modeling Multi-Generation Product Diffusion in the Context of Dual-Brand Competition and Sustainable Improvement," Sustainability, MDPI, vol. 15(17), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:279:y:2019:i:1:p:199-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.