IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v15y2013i3p343-360.html
   My bibliography  Save this article

A Population-Growth Model for Multiple Generations of Technology Products

Author

Listed:
  • Hongmin Li

    (W. P. Carey School of Business, Arizona State University, Tempe, Arizona 85287)

  • Dieter Armbruster

    (School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287)

  • Karl G. Kempf

    (Decision Engineering Group, Intel Corporation, Chandler, Arizona 85226)

Abstract

In this paper, we consider the demand for multiple, successive generations of products and develop a population-growth model that allows demand transitions across multiple product generations and takes into consideration the effect of competition. We propose an iterative-descent method for obtaining the parameter estimates and the covariance matrix, and we show that the method is theoretically sound and overcomes the difficulty that the units-in-use population of each product is not observable. We test the model on both simulated sales data and Intel's high-end desktop processor sales data. We use two alternative specifications for product strength in this market: performance and performance/price ratio. The former demonstrates better fit and forecast accuracy, likely due to the low price sensitivity of this high-end market. In addition, the parameter estimate suggests that, for the innovators in the diffusion of product adoption, brand switchings are more strongly influenced by product strength than within-brand product upgrades in this market. Our results indicate that compared with the Bass model, Norton–Bass model, and Jun–Park choice-based diffusion model, our approach is a better fit for strategic forecasting that occurs many months or years before the actual product launch.

Suggested Citation

  • Hongmin Li & Dieter Armbruster & Karl G. Kempf, 2013. "A Population-Growth Model for Multiple Generations of Technology Products," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 343-360, July.
  • Handle: RePEc:inm:ormsom:v:15:y:2013:i:3:p:343-360
    DOI: 10.1287/msom.2013.0430
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.2013.0430
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.2013.0430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karl G. Kempf & Feryal Erhun & Erik F. Hertzler & Timothy R. Rosenberg & Chen Peng, 2013. "Optimizing Capital Investment Decisions at Intel Corporation," Interfaces, INFORMS, vol. 43(1), pages 62-78, February.
    2. Gautam Gowrisankaran & Marc Rysman, 2012. "Dynamics of Consumer Demand for New Durable Goods," Journal of Political Economy, University of Chicago Press, vol. 120(6), pages 1173-1219.
    3. John A. Norton & Frank M. Bass, 1987. "A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products," Management Science, INFORMS, vol. 33(9), pages 1069-1086, September.
    4. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    5. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    6. Sunil Kumar & Jayashankar M. Swaminathan, 2003. "Diffusion of Innovations Under Supply Constraints," Operations Research, INFORMS, vol. 51(6), pages 866-879, December.
    7. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    8. Sergei Savin & Christian Terwiesch, 2005. "Optimal Product Launch Times in a Duopoly: Balancing Life-Cycle Revenues with Product Cost," Operations Research, INFORMS, vol. 53(1), pages 26-47, February.
    9. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    10. S. David Wu & Karl G. Kempf & Mehmet O. Atan & Berrin Aytac & Shamin A. Shirodkar & Asima Mishra, 2010. "Improving New-Product Forecasting at Intel Corporation," Interfaces, INFORMS, vol. 40(5), pages 385-396, October.
    11. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    12. Teck-Hua Ho & Sergei Savin & Christian Terwiesch, 2002. "Managing Demand and Sales Dynamics in New Product Diffusion Under Supply Constraint," Management Science, INFORMS, vol. 48(2), pages 187-206, February.
    13. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    14. Bass, Frank M, 1980. "The Relationship between Diffusion Rates, Experience Curves, and Demand Elasticities for Consumer Durable Technological Innovations," The Journal of Business, University of Chicago Press, vol. 53(3), pages 51-67, July.
    15. Brett R. Gordon, 2009. "A Dynamic Model of Consumer Replacement Cycles in the PC Processor Industry," Marketing Science, INFORMS, vol. 28(5), pages 846-867, 09-10.
    16. Jain, Dipak C & Rao, Ram C, 1990. "Effect of Price on the Demand for Durables: Modeling, Estimation, and Findings," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 163-170, April.
    17. Shlomo Kalish, 1985. "A New Product Adoption Model with Price, Advertising, and Uncertainty," Management Science, INFORMS, vol. 31(12), pages 1569-1585, December.
    18. Chen Peng & Feryal Erhun & Erik F. Hertzler & Karl G. Kempf, 2012. "Capacity Planning in the Semiconductor Industry: Dual-Mode Procurement with Options," Manufacturing & Service Operations Management, INFORMS, vol. 14(2), pages 170-185, April.
    19. Inseong Song & Pradeep Chintagunta, 2003. "A Micromodel of New Product Adoption with Heterogeneous and Forward-Looking Consumers: Application to the Digital Camera Category," Quantitative Marketing and Economics (QME), Springer, vol. 1(4), pages 371-407, December.
    20. Namwoon Kim & Dae Ryun Chang & Allan D. Shocker, 2000. "Modeling Intercategory and Generational Dynamics for A Growing Information Technology Industry," Management Science, INFORMS, vol. 46(4), pages 496-512, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongmin Li, 2020. "Optimal Pricing Under Diffusion-Choice Models," Operations Research, INFORMS, vol. 68(1), pages 115-133, January.
    2. Stylianos Kavadias & Karl T. Ulrich, 2020. "Innovation and New Product Development: Reflections and Insights from the Research Published in the First 20 Years of Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 84-92, January.
    3. Samuel Sale, R. & Mesak, Hani I. & Inman, R. Anthony, 2017. "A dynamic marketing-operations interface model of new product updates," European Journal of Operational Research, Elsevier, vol. 257(1), pages 233-242.
    4. Teun Adriaansen & Dieter Armbruster & Karl Kempf & Hongmin Li, 2013. "An Agent Model For The High-End Gamers Market," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 16(07), pages 1-33.
    5. Dong, Ming & Mao, Shunjie & Li, Shan, 2023. "Supplier's technology upgrading investment strategy considering product life cycle," International Journal of Production Economics, Elsevier, vol. 263(C).
    6. Kocaman, Barış & Gelper, Sarah & Langerak, Fred, 2023. "Till the cloud do us part: Technological disruption and brand retention in the enterprise software industry," International Journal of Research in Marketing, Elsevier, vol. 40(2), pages 316-341.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    2. Shun-Chen Niu, 2006. "A Piecewise-Diffusion Model of New-Product Demands," Operations Research, INFORMS, vol. 54(4), pages 678-695, August.
    3. Hongmin Li, 2020. "Optimal Pricing Under Diffusion-Choice Models," Operations Research, INFORMS, vol. 68(1), pages 115-133, January.
    4. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    5. Shi, Xiaohui & Chumnumpan, Pattarin, 2019. "Modelling market dynamics of multi-brand and multi-generational products," European Journal of Operational Research, Elsevier, vol. 279(1), pages 199-210.
    6. Shi, Xiaohui & Li, Feng & Bigdeli, Ali Ziaee, 2016. "An examination of NPD models in the context of business models," Journal of Business Research, Elsevier, vol. 69(7), pages 2541-2550.
    7. Samuel Sale, R. & Mesak, Hani I. & Inman, R. Anthony, 2017. "A dynamic marketing-operations interface model of new product updates," European Journal of Operational Research, Elsevier, vol. 257(1), pages 233-242.
    8. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    9. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    10. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    11. Hong, Zhaofu & Li, Mengfan & Han, Xiaoya & He, Xuhuai, 2020. "Innovative green product diffusion through word of mouth," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    12. Wenjing Shen & Izak Duenyas & Roman Kapuscinski, 2014. "Optimal Pricing, Production, and Inventory for New Product Diffusion Under Supply Constraints," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 28-45, February.
    13. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    14. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    15. Zhiling Guo & Jianqing Chen, 2018. "Multigeneration Product Diffusion in the Presence of Strategic Consumers," Information Systems Research, INFORMS, vol. 29(1), pages 206-224, March.
    16. Ferreira, Kevin D. & Lee, Chi-Guhn, 2014. "An integrated two-stage diffusion of innovation model with market segmented learning," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 189-201.
    17. Guidolin, Mariangela & Guseo, Renato, 2015. "Technological change in the U.S. music industry: Within-product, cross-product and churn effects between competing blockbusters," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 35-46.
    18. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2020. "Modeling technology diffusion: a study based on market coverage and advertising efforts," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 154-162, July.
    19. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    20. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:15:y:2013:i:3:p:343-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.