IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v305y2021i1d10.1007_s10479-021-03944-1.html
   My bibliography  Save this article

Agent‐based modeling of new product market diffusion: an overview of strengths and criticisms

Author

Listed:
  • William Rand

    (North Carolina State University)

  • Christian Stummer

    (Bielefeld University)

Abstract

Market diffusion of new products is driven by the actions and reactions of consumers, distributors, competitors, and other stakeholders, all of whom can be heterogeneous in their individual characteristics, attitudes, needs, and objectives. These actors may also interact with others in various ways (e.g., through word of mouth or social influence). Thus, a typical consumer market constitutes a complex system whose behavior is difficult to foresee because stochastic impulses may give rise to complex emergent patterns of system reactions over time. Agent-based modeling, a relatively novel approach to understanding complex systems, is well equipped to deal with this complexity and, therefore, may serve as a valuable tool for both researchers studying particular market effects and practitioners seeking decision support for determining features of products under development or the appropriate combination of measures to accelerate product diffusion in a market. This paper provides an overview of the strengths and criticisms of such tools. It aims to encourage researchers in the field of innovation management, as well as practitioners, to consider agent-based modeling and simulation as a method for gaining deeper insights into market behavior and making better-informed decisions.

Suggested Citation

  • William Rand & Christian Stummer, 2021. "Agent‐based modeling of new product market diffusion: an overview of strengths and criticisms," Annals of Operations Research, Springer, vol. 305(1), pages 425-447, October.
  • Handle: RePEc:spr:annopr:v:305:y:2021:i:1:d:10.1007_s10479-021-03944-1
    DOI: 10.1007/s10479-021-03944-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-03944-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-03944-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    2. Bearden, William O & Rose, Randall L, 1990. "Attention to Social Comparison Information: An Individual Difference Factor Affecting Consumer Conformity," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 16(4), pages 461-471, March.
    3. Guus ten Broeke & George van Voorn & Arend Ligtenberg, 2016. "Which Sensitivity Analysis Method Should I Use for My Agent-Based Model?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-5.
    4. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    5. William Rand & Jeffrey Herrmann & Brandon Schein & Neža Vodopivec, 2015. "An Agent-Based Model of Urgent Diffusion in Social Media," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-1.
    6. Christian Stummer & Elmar Kiesling, 2021. "An agent-based market simulation for enriching innovation management education," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 143-161, March.
    7. Midgley, David F & Dowling, Grahame R, 1978. "Innovativeness: The Concept and Its Measurement," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 4(4), pages 229-242, March.
    8. Midgley, David & Marks, Robert & Kunchamwar, Dinesh, 2007. "Building and assurance of agent-based models: An example and challenge to the field," Journal of Business Research, Elsevier, vol. 60(8), pages 884-893, August.
    9. Stummer, Christian & Kiesling, Elmar & Günther, Markus & Vetschera, Rudolf, 2015. "Innovation diffusion of repeat purchase products in a competitive market: An agent-based simulation approach," European Journal of Operational Research, Elsevier, vol. 245(1), pages 157-167.
    10. Oliver Michler & Reinhold Decker & Christian Stummer, 2020. "To trust or not to trust smart consumer products: a literature review of trust-building factors," Management Review Quarterly, Springer, vol. 70(3), pages 391-420, August.
    11. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    12. Lea Sonderegger-Wakolbinger & Christian Stummer, 2015. "An agent-based simulation of customer multi-channel choice behavior," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(2), pages 459-477, June.
    13. Sabrina Backs & Markus Günther & Christian Stummer, 2019. "Stimulating academic patenting in a university ecosystem: an agent-based simulation approach," The Journal of Technology Transfer, Springer, vol. 44(2), pages 434-461, April.
    14. M Günther & C Stummer & L M Wakolbinger & M Wildpaner, 2011. "An agent-based simulation approach for the new product diffusion of a novel biomass fuel," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 12-20, January.
    15. Dellarocas, Chrysanthos, 2003. "The Digitization of Word-of-mouth: Promise and Challenges of Online Feedback Mechanisms," Working papers 4296-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    16. Holland, John H & Miller, John H, 1991. "Artificial Adaptive Agents in Economic Theory," American Economic Review, American Economic Association, vol. 81(2), pages 365-371, May.
    17. Herbert Dawid & Reinhold Decker & Thomas Hermann & Hermann Jahnke & Wilhelm Klat & Rolf König & Christian Stummer, 2017. "Management science in the era of smart consumer products: challenges and research perspectives," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 203-230, March.
    18. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, December.
    19. Torsten Heinrich & Claudius Gräbner, 2019. "Beyond equilibrium: revisiting two-sided markets from an agent-based modelling perspective," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 9(3), pages 153-180.
    20. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    21. Goldenberg, Jacob & Libai, Barak & Muller, Eitan, 2010. "The chilling effects of network externalities," International Journal of Research in Marketing, Elsevier, vol. 27(1), pages 4-15.
    22. Granovetter, Mark & Soong, Roland, 1986. "Threshold models of interpersonal effects in consumer demand," Journal of Economic Behavior & Organization, Elsevier, vol. 7(1), pages 83-99, March.
    23. Chrysanthos Dellarocas, 2003. "The Digitization of Word of Mouth: Promise and Challenges of Online Feedback Mechanisms," Management Science, INFORMS, vol. 49(10), pages 1407-1424, October.
    24. Hazhir Rahmandad & John Sterman, 2008. "Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models," Management Science, INFORMS, vol. 54(5), pages 998-1014, May.
    25. Edward Bishop Smith & William Rand, 2018. "Simulating Macro-Level Effects from Micro-Level Observations," Management Science, INFORMS, vol. 64(11), pages 5405-5421, November.
    26. Clements, Matthew T., 2004. "Direct and indirect network effects: are they equivalent?," International Journal of Industrial Organization, Elsevier, vol. 22(5), pages 633-645, May.
    27. Christian Stummer & Dennis Kundisch & Reinhold Decker, 2018. "Platform Launch Strategies," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 60(2), pages 167-173, April.
    28. Sabrina Backs & Hermann Jahnke & Lars Lüpke & Mareike Stücken & Christian Stummer, 2021. "Traditional versus fast fashion supply chains in the apparel industry: an agent-based simulation approach," Annals of Operations Research, Springer, vol. 305(1), pages 487-512, October.
    29. H. Peyton Young, 2009. "Innovation Diffusion in Heterogeneous Populations: Contagion, Social Influence, and Social Learning," American Economic Review, American Economic Association, vol. 99(5), pages 1899-1924, December.
    30. Brown, Jacqueline Johnson & Reingen, Peter H, 1987. "Social Ties and Word-of-Mouth Referral Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 14(3), pages 350-362, December.
    31. Dan Horsky & Leonard S. Simon, 1983. "Advertising and the Diffusion of New Products," Marketing Science, INFORMS, vol. 2(1), pages 1-17.
    32. William Rand & Roland T. Rust & Min Kim, 2018. "Complex systems: marketing’s new frontier," AMS Review, Springer;Academy of Marketing Science, vol. 8(3), pages 111-127, December.
    33. Peter N. Golder & Gerard J. Tellis, 2004. "Growing, Growing, Gone: Cascades, Diffusion, and Turning Points in the Product Life Cycle," Marketing Science, INFORMS, vol. 23(2), pages 207-218, December.
    34. Michelle D. Haurand & Christian Stummer, 2018. "Stakes or garlic? Studying the emergence of dominant designs through an agent-based model of a vampire economy," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 373-394, June.
    35. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    36. Xing Zhong & Salih Zeki Ozdemir, 2010. "Structure, learning, and the speed of innovating: a two-phase model of collective innovation using agent based modeling," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(5), pages 1459-1492, October.
    37. Sun, Xiaohua & Liu, Xiaoling & Wang, Yun & Yuan, Fang, 2019. "The effects of public subsidies on emerging industry: An agent-based model of the electric vehicle industry," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 281-295.
    38. Mohamed Souka & Daniel Böger & Reinhold Decker & Christian Stummer & Alisa Wiemann, 2020. "Is more automation always better? An empirical study of customers' willingness to use autonomous vehicle functions," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 20(1), pages 1-24.
    39. Delre, S.A. & Jager, W. & Bijmolt, T.H.A. & Janssen, M.A., 2007. "Targeting and timing promotional activities: An agent-based model for the takeoff of new products," Journal of Business Research, Elsevier, vol. 60(8), pages 826-835, August.
    40. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Stummer & Lars Lüpke & Markus Günther, 2021. "Beaming market simulation to the future by combining agent-based modeling with scenario analysis," Journal of Business Economics, Springer, vol. 91(9), pages 1469-1497, November.
    2. Darren Nel & Araz Taeihagh, 2024. "The soft underbelly of complexity science adoption in policymaking: towards addressing frequently overlooked non-technical challenges," Policy Sciences, Springer;Society of Policy Sciences, vol. 57(2), pages 403-436, June.
    3. Ding, Haixin & Xie, Li, 2023. "Simulating rumor spreading and rebuttal strategy with rebuttal forgetting: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    4. Ponta, Linda & Puliga, Gloria & Lazzarotti, Valentina & Manzini, Raffaella & Cincotti, Silvano, 2023. "To copatent or not to copatent: An agent-based model for firms facing this dilemma," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1349-1363.
    5. Lorena Reyes-Rubiano & Ingrid Y. Amaya & David Medina Mayorga & Andrés Muñoz-Villamizar & Elyn Solano-Charris, 2024. "How does technological innovation impact the service time and the attraction of new customers in the financial sector? Evidence from an emerging economy," Operations Management Research, Springer, vol. 17(2), pages 596-611, June.
    6. Xiao, Yu & Liu, Liangliang, 2024. "How does information competition affect new product diffusion? Insights from computational experiments," Journal of Business Research, Elsevier, vol. 183(C).
    7. Ding, Haixin & Xie, Li, 2024. "The applicability of positive information in negative opinion management: An attitude-laden communication perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Stummer & Lars Lüpke & Markus Günther, 2021. "Beaming market simulation to the future by combining agent-based modeling with scenario analysis," Journal of Business Economics, Springer, vol. 91(9), pages 1469-1497, November.
    2. Nejad, Mohammad G. & Amini, Mehdi & Babakus, Emin, 2015. "Success Factors in Product Seeding: The Role of Homophily," Journal of Retailing, Elsevier, vol. 91(1), pages 68-88.
    3. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    4. William Rand & Roland T. Rust & Min Kim, 2018. "Complex systems: marketing’s new frontier," AMS Review, Springer;Academy of Marketing Science, vol. 8(3), pages 111-127, December.
    5. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    6. Xiao, Yu & Han, Jingti, 2016. "Forecasting new product diffusion with agent-based models," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 167-178.
    7. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    8. Christian Stummer & Elmar Kiesling, 2021. "An agent-based market simulation for enriching innovation management education," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 143-161, March.
    9. Sabrina Backs & Hermann Jahnke & Lars Lüpke & Mareike Stücken & Christian Stummer, 2021. "Traditional versus fast fashion supply chains in the apparel industry: an agent-based simulation approach," Annals of Operations Research, Springer, vol. 305(1), pages 487-512, October.
    10. Anna Borawska & Malgorzata Latuszynska, 2020. "Incorporating Neuroscience Data into Agent-Based Simulation Models of Buyer Behavior," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 1197-1212.
    11. Xiao, Yu & Liu, Liangliang, 2024. "How does information competition affect new product diffusion? Insights from computational experiments," Journal of Business Research, Elsevier, vol. 183(C).
    12. Herbert Dawid & Reinhold Decker & Thomas Hermann & Hermann Jahnke & Wilhelm Klat & Rolf König & Christian Stummer, 2017. "Management science in the era of smart consumer products: challenges and research perspectives," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 203-230, March.
    13. Ashkan Negahban & Jeffrey S. Smith, 2018. "A joint analysis of production and seeding strategies for new products: an agent-based simulation approach," Annals of Operations Research, Springer, vol. 268(1), pages 41-62, September.
    14. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2019. "A review of designing empirically grounded agent-based models of innovation diffusion: Development process, conceptual foundation and research agenda," Contributions of the Institute for Infrastructure and Resources Management 01/2019, University of Leipzig, Institute for Infrastructure and Resources Management.
    15. Hu, Hai-hua & Lin, Jun & Qian, Yanjun & Sun, Jian, 2018. "Strategies for new product diffusion: Whom and how to target?," Journal of Business Research, Elsevier, vol. 83(C), pages 111-119.
    16. Rixen, Martin & Weigand, Jürgen, 2014. "Agent-based simulation of policy induced diffusion of smart meters," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 153-167.
    17. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    18. Jiang, Guoyin & Tadikamalla, Pandu R. & Shang, Jennifer & Zhao, Ling, 2016. "Impacts of knowledge on online brand success: an agent-based model for online market share enhancement," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1093-1103.
    19. Michelle D. Haurand & Christian Stummer, 2018. "Stakes or garlic? Studying the emergence of dominant designs through an agent-based model of a vampire economy," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 373-394, June.
    20. Goldenberg, Jacob & Libai, Barak & Muller, Eitan, 2010. "The chilling effects of network externalities," International Journal of Research in Marketing, Elsevier, vol. 27(1), pages 4-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:305:y:2021:i:1:d:10.1007_s10479-021-03944-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.