IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2015-26-2.html
   My bibliography  Save this article

Which Sensitivity Analysis Method Should I Use for My Agent-Based Model?

Author

Listed:
  • Guus ten Broeke
  • George van Voorn
  • Arend Ligtenberg

Abstract

Existing methodologies of sensitivity analysis may be insufficient for a proper analysis of Agent-based Models (ABMs). Most ABMs consist of multiple levels, contain various nonlinear interactions, and display emergent behaviour. This limits the information content that follows from the classical sensitivity analysis methodologies that link model output to model input. In this paper we evaluate the performance of three well-known methodologies for sensitivity analysis. The three methodologies are extended OAT (one-at-a-time), and proportional assigning of output variance by means of model fitting and by means of Sobol’ decomposition. The methodologies are applied to a case study of limited complexity consisting of free-roaming and procreating agents that make harvest decisions with regard to a diffusing renewable resource. We find that each methodology has its own merits and exposes useful information, yet none of them provide a complete picture of model behaviour. We recommend extended OAT as the starting point for sensitivity analysis of an ABM, for its use in uncovering the mechanisms and patterns that the ABM produces.

Suggested Citation

  • Guus ten Broeke & George van Voorn & Arend Ligtenberg, 2016. "Which Sensitivity Analysis Method Should I Use for My Agent-Based Model?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-5.
  • Handle: RePEc:jas:jasssj:2015-26-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/19/1/5/5.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tarantola, S. & Gatelli, D. & Mara, T.A., 2006. "Random balance designs for the estimation of first order global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 717-727.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Pengfei & Lu, Zhenzhou & Yuan, Xiukai, 2013. "Monte Carlo simulation for moment-independent sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 60-67.
    2. Zhai, Qingqing & Yang, Jun & Zhao, Yu, 2014. "Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 66-82.
    3. Song, Xiaodong & Bryan, Brett A. & Almeida, Auro C. & Paul, Keryn I. & Zhao, Gang & Ren, Yin, 2013. "Time-dependent sensitivity of a process-based ecological model," Ecological Modelling, Elsevier, vol. 265(C), pages 114-123.
    4. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Gatelli, D. & Kucherenko, S. & Ratto, M. & Tarantola, S., 2009. "Calculating first-order sensitivity measures: A benchmark of some recent methodologies," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1212-1219.
    6. Azzini, Ivano & Rosati, Rossana, 2021. "Sobol’ main effect index: an Innovative Algorithm (IA) using Dynamic Adaptive Variances," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Heredia, María Belén & Prieur, Clémentine & Eckert, Nicolas, 2021. "Nonparametric estimation of aggregated Sobol’ indices: Application to a depth averaged snow avalanche model," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    8. Kieran Alden & Mark Read & Jon Timmis & Paul S Andrews & Henrique Veiga-Fernandes & Mark Coles, 2013. "Spartan: A Comprehensive Tool for Understanding Uncertainty in Simulations of Biological Systems," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-9, February.
    9. Plischke, Elmar, 2010. "An effective algorithm for computing global sensitivity indices (EASI)," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 354-360.
    10. Kucherenko, S. & Delpuech, B. & Iooss, B. & Tarantola, S., 2015. "Application of the control variate technique to estimation of total sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 251-259.
    11. Xu, Chonggang & Gertner, George Zdzislaw, 2008. "A general first-order global sensitivity analysis method," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 1060-1071.
    12. Spiessl, Sabine M. & Kucherenko, Sergei & Becker, Dirk-A. & Zaccheus, Oluyemi, 2019. "Higher-order sensitivity analysis of a final repository model with discontinuous behaviour using the RS-HDMR meta-modeling approach," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 149-158.
    13. Xu, Chonggang & Gertner, George Z., 2009. "Uncertainty analysis of transient population dynamics," Ecological Modelling, Elsevier, vol. 220(3), pages 283-293.
    14. Mara, Thierry Alex, 2009. "Extension of the RBD-FAST method to the computation of global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1274-1281.
    15. Wei, Pengfei & Lu, Zhenzhou & Ruan, Wenbin & Song, Jingwen, 2014. "Regional sensitivity analysis using revised mean and variance ratio functions," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 121-135.
    16. Xue-ping Chen & Jin-Guan Lin & Xiao-di Wang & Xing-fang Huang, 2015. "Further results on orthogonal arrays for the estimation of global sensitivity indices based on alias matrix," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 411-426, September.
    17. Saideep Nannapaneni & Sankaran Mahadevan & Abhishek Dubey & Yung-Tsun Tina Lee, 2021. "Online monitoring and control of a cyber-physical manufacturing process under uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1289-1304, June.
    18. Cheng, Lei & Lu, Zhenzhou & Zhang, Leigang, 2015. "Application of Rejection Sampling based methodology to variance based parametric sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 9-18.
    19. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    20. Zhang, Xufang & Pandey, Mahesh D., 2014. "An effective approximation for variance-based global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 164-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2015-26-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.