IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0501015.html
   My bibliography  Save this paper

Overlaying Time Scales in Financial Volatility Data

Author

Listed:
  • Eric Hillebrand

    (Louisiana State University, Department of Economics)

Abstract

Apart from the well-known, high persistence of daily financial volatility data, there is also a short correlation structure that reverts to the mean in less than a month. We find this short correlation time scale in six different daily financial time series and use it to improve the short-term forecasts from GARCH models. We study different generalizations of GARCH that allow for several time scales. On our holding sample, none of the considered models can fully exploit the information contained in the short scale. Wavelet analysis shows a correlation between fluctuations on long and on short scales. Models accounting for this correlation as well as long memory models for absolute returns appear to be promising.

Suggested Citation

  • Eric Hillebrand, 2005. "Overlaying Time Scales in Financial Volatility Data," Econometrics 0501015, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpem:0501015
    Note: Type of Document - pdf; pages: 40
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0501/0501015.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    2. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew Lorig, 2010. "Time-Changed Fast Mean-Reverting Stochastic Volatility Models," Papers 1010.5203, arXiv.org, revised Apr 2012.
    2. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
    3. Jean-Pierre Fouque & Sebastian Jaimungal & Matthew Lorig, 2010. "Spectral Decomposition of Option Prices in Fast Mean-Reverting Stochastic Volatility Models," Papers 1007.4361, arXiv.org, revised Apr 2012.

    More about this item

    Keywords

    GARCH; volatility persistence; spurious high persistence; long memory; fractional integration; change-points; wavelets; time scales;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0501015. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.