IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Endogenous Networks in Random Population Games

  • Giorgio Fagiolo

    ()

    (Sant'Anna School of Advanced Studies, Laboratory of Economics and Management (LEM), Piazza Martiri della Liberta' 33, 56127 Pisa, Italy)

  • Luigi Marengo

    ()

    (University of Teramo, DSGSS, Loc. Colleparco, 64100 Teramo, Italy)

  • Marco Valente

    ()

    (University of L'Aquila, Facolta' di Economia, Piazza del Santuario 19, 67040 Roio Poggio, L'Aquila, Italy)

In the last years, many contributions have been exploring population learning in economies where myopic agents play bilateral games and are allowed to repeatedly choose their pure strategies in the game and, possibly, their opponents in the game. These models explore bilateral stage-games reflecting very simple strategic situations (e.g. coordination). Moreover, they assume that payoffs are common knowledge and all agents play the same game against the others. Therefore, population learning acts on smooth landscapes where individual payoffs are relatively stable across strategy configurations. In this paper, we address a preliminary investigation of dynamic population games with endogenous networks over ‘rugged’ landscapes, where agents face a strong uncertainty about expected payoffs from bilateral interactions. We propose a simple model where individual payoffs from playing a binary action against everyone else (conditional to any possible combination of actions performed by the others) are distributed as a i.i.d. U[0,1] r.v.. We call this setting a ‘random population game’ and we study population adaptation over time when agents can update both actions and partners using deterministic, myopic, best reply rules. We assume that agents evaluate payoffs associated to networks where an agent is not linked with everyone else by using simple rules (i.e. statistics such as MIN, MAX, MEAN, etc.) computed on the distributions of payoffs associated to all possible action combinations performed by agents outside the interaction set. We investigate the long-run properties of the system by means of computer simulations. We show that both the LR behavior of the system (e.g. convergence to steady-states) and its short-run dynamic properties are strongly affected by: (i) the payoff rule employed; (ii) whether players are change-adverse or not. We find that if agents use the MEAN rule, then, irrespective of the change-aversion regime, the system displays multiplicity of steady-states. Populations always climb local optima by first using AU/NU together and then NU only. Climbing occurs through successful adaptation and generates LR positive correlation between number of links and average payoffs. With MIN or MAX rules, the LR behavior of the system is instead affected by whether players are change-adverse. If they are, and employ the MIN rule, then the network converges to a steady-state where all agents are (almost) fully connected but strategies are not, so that average payoffs oscillate. If agents employ the MAX rule then the system displays many steady-states (in both networks and actions) characterized by few links and different levels of average payoff. Finally, if agents are change-lovers, then the population can explore a larger portion of the landscape. Therefore, with agents using the MIN rule, the network will quickly approach to the complete one, but from then on exploration on strategies and networks will go on forever. If they employ the MAX rule, then the system will reach a unique payoff optimum. All populations converge to the same payoff distribution but neutral NU will continue forever (without affecting realized payoffs).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://sssup1.sssup.it/~lem/WPLem/2003-03.html
Our checks indicate that this address may not be valid because: 500 Can't connect to sssup1.sssup.it:80. If this is indeed the case, please notify (Christopher F. Baum)


Download Restriction: no

Paper provided by Society for Computational Economics in its series Modeling, Computing, and Mastering Complexity 2003 with number 05.

as
in new window

Length:
Date of creation:
Date of revision:
Handle: RePEc:sce:cplx03:05
Contact details of provider: Web page: http://zai.ini.unizh.ch/complexity2003/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bhaskar, V & Vega-Redondo, F, 1996. "Migration and the Evolution of Conventions," UFAE and IAE Working Papers 354.96, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  2. Brock,W.A. & Durlauf,S.N., 2000. "Discrete choice with social interactions," Working papers 7, Wisconsin Madison - Social Systems.
  3. Jackson, Matthew O. & Watts, Alison, 2002. "The Evolution of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 106(2), pages 265-295, October.
  4. Stanley, E.A. & Ashlock, Daniel & Tesfatsion, Leigh, 1994. "Iterated Prisoner's Dilemma with Choice and Refusal of Partners," Staff General Research Papers 11180, Iowa State University, Department of Economics.
  5. Dieckmann, Tone, 1999. "The evolution of conventions with mobile players," Journal of Economic Behavior & Organization, Elsevier, vol. 38(1), pages 93-111, January.
  6. H. Peyton Young, 1996. "The Economics of Convention," Journal of Economic Perspectives, American Economic Association, vol. 10(2), pages 105-122, Spring.
  7. Watts, Alison, 2001. "A Dynamic Model of Network Formation," Games and Economic Behavior, Elsevier, vol. 34(2), pages 331-341, February.
  8. M. Kandori & G. Mailath & R. Rob, 1999. "Learning, Mutation and Long Run Equilibria in Games," Levine's Working Paper Archive 500, David K. Levine.
  9. Oechssler, Jorg, 1997. "Decentralization and the coordination problem," Journal of Economic Behavior & Organization, Elsevier, vol. 32(1), pages 119-135, January.
  10. Giorgio Fagiolo, 2001. "Coordination, Local Interactions and Endogenous Neighborhood Formation," LEM Papers Series 2001/15, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  11. Ashlock, Daniel & Smucker, Mark D. & Stanley, E. Ann & Tesfatsion, Leigh S., 1996. "Preferential Partner Selection in an Evolutionary Study of Prisoner's Dilemma," Staff General Research Papers 1687, Iowa State University, Department of Economics.
  12. repec:att:wimass:9426 is not listed on IDEAS
  13. Glen Ellison, 2010. "Learning, Local Interaction, and Coordination," Levine's Working Paper Archive 391, David K. Levine.
  14. Blume Lawrence E., 1993. "The Statistical Mechanics of Strategic Interaction," Games and Economic Behavior, Elsevier, vol. 5(3), pages 387-424, July.
  15. George Mailath & Larry Samuelson & Avner Shaked, 1994. "Evolution and Endogenous Interactions," Game Theory and Information 9410003, EconWPA.
  16. Alan Kirman, 1997. "The economy as an evolving network," Journal of Evolutionary Economics, Springer, vol. 7(4), pages 339-353.
  17. Hirshlifer, David & Rassmusen, Eric, 1989. "Cooperation in a repeated prisoners' dilemma with ostracism," Journal of Economic Behavior & Organization, Elsevier, vol. 12(1), pages 87-106, August.
  18. Alexander F. Tieman & Harold Houba & Gerard van der Laan, 1998. "Cooperation in a Multi-Dimensional Local Interaction Model," Game Theory and Information 9803002, EconWPA.
  19. Page, Scott E, 1997. "On Incentives and Updating in Agent Based Models," Computational Economics, Society for Computational Economics, vol. 10(1), pages 67-87, February.
  20. Edward Droste & Robert P. Gilles & Cathleen Johnson, 2000. "Evolution of Conventions in Endogenous Social Networks," Econometric Society World Congress 2000 Contributed Papers 0594, Econometric Society.
  21. Blume,L.E. & Durlauf,S.N., 2000. "The interactions-based approach to socioeconomic behavior," Working papers 1, Wisconsin Madison - Social Systems.
  22. Nobuyuki Hanaki & Alexander Peterhansl, 2002. "Viability of Cooperation in Evolving Interaction Structures," Computing in Economics and Finance 2002 120, Society for Computational Economics.
  23. Goyal, Sanjeev & Janssen, Maarten C. W., 1997. "Non-Exclusive Conventions and Social Coordination," Journal of Economic Theory, Elsevier, vol. 77(1), pages 34-57, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:sce:cplx03:05. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.