IDEAS home Printed from https://ideas.repec.org/p/isu/genres/1680.html

A Trade Network Game with Endogenous Partner Selection

Author

Listed:
  • Tesfatsion, Leigh

Abstract

This paper develops an evolutionary trade network game (TNG) that combines evolutionary game play with endogenous partner selection. Successive generations of resource-constrained buyers and sellers choose and refuse trade partners on the basis of continually updated expected payoffs. Trade partner selection takes place in accordance with a modified Gale-Shapley matching mechanism, and trades are implemented using trade strategies evolved via a standardly specified genetic algorithm. The trade partnerships resulting from the matching mechanism are shown to be core stable and Pareto optimal in each successive trade cycle. Nevertheless, computer experiments suggest that these static optimality properties may be inadequate measures of optimality from an evolutionary perspective. Related work can be accessed at: http://www2.econ.iastate.edu/tesfatsi/tnghome.htm

Suggested Citation

  • Tesfatsion, Leigh, 1997. "A Trade Network Game with Endogenous Partner Selection," Staff General Research Papers Archive 1680, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genres:1680
    as

    Download full text from publisher

    File URL: http://www2.econ.iastate.edu/tesfatsi/tngroot.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • D4 - Microeconomics - - Market Structure, Pricing, and Design

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genres:1680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Curtis Balmer (email available below). General contact details of provider: https://edirc.repec.org/data/deiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.