IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-08-54.html
   My bibliography  Save this paper

Understanding Errors in EIA Projections of Energy Demand

Author

Listed:
  • Fischer, Carolyn

    () (Resources for the Future)

  • Herrnstadt, Evan
  • Morgenstern, Richard D.

Abstract

This paper investigates the potential for systematic errors in the Energy Information Administration’s (EIA) widely used Annual Energy Outlook, focusing on the near- to midterm projections of energy demand as measured in physical quantities. Overall, based on an analysis of the EIA’s 22-year projection record, we find a fairly modest but persistent tendency to underestimate total energy demand by an average of 2 percent per year over the one- to five-year projection horizon after controlling for projection errors in gross domestic product, oil prices, and heating/cooling degree days. For the 14 individual fuels/consuming sectors routinely reported by the EIA, we observe a great deal of directional consistency in the error patterns over time, ranging up to 7 percent per year. Electric utility renewables, electric utility natural gas, transportation distillate, and residential electricity all show significant biases, on average, across the full five year projection horizon examined. Projections for certain other fuels/consuming sectors have significant unexplained errors for selected time horizons. Independent evaluation of this type can be useful for validating ongoing analytic efforts and for prioritizing future model revisions.

Suggested Citation

  • Fischer, Carolyn & Herrnstadt, Evan & Morgenstern, Richard D., 2008. "Understanding Errors in EIA Projections of Energy Demand," Discussion Papers dp-08-54, Resources For the Future.
  • Handle: RePEc:rff:dpaper:dp-08-54
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/documents/RFF-DP-07-54.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Auffhammer, Maximilian, 2007. "The rationality of EIA forecasts under symmetric and asymmetric loss," Resource and Energy Economics, Elsevier, vol. 29(2), pages 102-121, May.
    2. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    3. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    4. Shlyakhter, Alexander I. & Kammen, Daniel M. & Broido, Claire L. & Wilson, Richard, 1994. "Quantifying the credibility of energy projections from trends in past data : The US energy sector," Energy Policy, Elsevier, vol. 22(2), pages 119-130, February.
    5. O'Neill, Brian C. & Desai, Mausami, 2005. "Accuracy of past projections of US energy consumption," Energy Policy, Elsevier, vol. 33(8), pages 979-993, May.
    6. Auffhammer, Maximilian, 2007. "The rationality of EIA forecasts under symmetric and asymmetric loss," Resource and Energy Economics, Elsevier, vol. 29(2), pages 102-121, May.
    7. Randall Lutter, 2000. "Developing Countries' Greenhouse Emmissions: Uncertainty and Implications for Participation in the Kyoto Protocol," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 93-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Hua & Cai, Jia-Wei & Yang, Dong-Wei & Wei, Yi-Ming, 2016. "Why did the historical energy forecasting succeed or fail? A case study on IEA's projection," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 90-96.
    2. Gilbert, Alexander Q. & Sovacool, Benjamin K., 2016. "Looking the wrong way: Bias, renewable electricity, and energy modelling in the United States," Energy, Elsevier, vol. 94(C), pages 533-541.
    3. James G. Baldwin & Ian Sue Wing, 2013. "The Spatiotemporal Evolution Of U.S. Carbon Dioxide Emissions: Stylized Facts And Implications For Climate Policy," Journal of Regional Science, Wiley Blackwell, vol. 53(4), pages 672-689, October.
    4. Wilkerson, Jordan T. & Cullenward, Danny & Davidian, Danielle & Weyant, John P., 2013. "End use technology choice in the National Energy Modeling System (NEMS): An analysis of the residential and commercial building sectors," Energy Economics, Elsevier, vol. 40(C), pages 773-784.
    5. Wirl, Franz, 2015. "Output adjusting cartels facing dynamic, convex demand under uncertainty: The case of OPEC," Economic Modelling, Elsevier, vol. 44(C), pages 307-316.
    6. repec:eee:appene:v:202:y:2017:i:c:p:597-617 is not listed on IDEAS
    7. Huntington, Hillard G., 2011. "Backcasting U.S. oil demand over a turbulent decade," Energy Policy, Elsevier, vol. 39(9), pages 5674-5680, September.
    8. Millard-Ball, Adam, 2013. "The trouble with voluntary emissions trading: Uncertainty and adverse selection in sectoral crediting programs☆☆Special thanks to Suzi Kerr, Lawrence Goulder, Michael Wara, Arthur van Benthem, Lee Sch," Journal of Environmental Economics and Management, Elsevier, vol. 65(1), pages 40-55.
    9. repec:eee:appene:v:220:y:2018:i:c:p:138-153 is not listed on IDEAS

    More about this item

    Keywords

    EIA; energy forecasting; bias;

    JEL classification:

    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-08-54. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: http://edirc.repec.org/data/degraus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.