IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/52080.html
   My bibliography  Save this paper

Long-Run Relationship among Transport Demand, Income, and Gasoline Price for the US

Author

Listed:
  • Liddle, Brantley

Abstract

Energy used in transport is a particularly important focus for environment-development studies because it is increasing in both developed and developing countries and is largely carbon-intensive. This paper examines whether a systemic, mutually causal, cointegrated relationship exists among mobility demand, gasoline price, income, and vehicle ownership using US data from 1946 to 2006. We find that those variables co-evolve in a transport system; and thus, they cannot be easily disentangled in the short-run. However, estimating a long-run relationship for motor fuel use per capita was difficult because of the efficacy of the CAFE standards to influence fleet fuel economy. The analysis shows that the fuel standards program was effective in improving the fuel economy of the US vehicle fleet and in temporarily lessening the impact on fuel use of increased mobility demand. Among the policy implications are a role for efficiency standards, a limited impact for fuel tax, and the necessity of using a number of levers simultaneously to influence transport systems.

Suggested Citation

  • Liddle, Brantley, 2009. "Long-Run Relationship among Transport Demand, Income, and Gasoline Price for the US," MPRA Paper 52080, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:52080
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/52080/1/MPRA_paper_52080.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    2. Polemis, Michael L., 2006. "Empirical assessment of the determinants of road energy demand in Greece," Energy Economics, Elsevier, vol. 28(3), pages 385-403, May.
    3. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    4. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    5. Brantley Liddle, 2003. "Demographic dynamics and per capita environmental impact: using panel regressions and household decompositions to examine population and transport," MPIDR Working Papers WP-2003-029, Max Planck Institute for Demographic Research, Rostock, Germany.
    6. Akinboade, Oludele A. & Ziramba, Emmanuel & Kumo, Wolassa L., 2008. "The demand for gasoline in South Africa: An empirical analysis using co-integration techniques," Energy Economics, Elsevier, vol. 30(6), pages 3222-3229, November.
    7. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    8. Bentzen, Jan, 1994. "An empirical analysis of gasoline demand in Denmark using cointegration techniques," Energy Economics, Elsevier, vol. 16(2), pages 139-143, April.
    9. Stern, David I., 1993. "Energy and economic growth in the USA : A multivariate approach," Energy Economics, Elsevier, vol. 15(2), pages 137-150, April.
    10. Stern, David I., 2000. "A multivariate cointegration analysis of the role of energy in the US macroeconomy," Energy Economics, Elsevier, vol. 22(2), pages 267-283, April.
    11. Hall, Alastair R, 1994. "Testing for a Unit Root in Time Series with Pretest Data-Based Model Selection," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 461-470, October.
    12. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    13. De Vita, G. & Endresen, K. & Hunt, L.C., 2006. "An empirical analysis of energy demand in Namibia," Energy Policy, Elsevier, vol. 34(18), pages 3447-3463, December.
    14. Daniel J. Graham & Stephen Glaister, 2002. "The Demand for Automobile Fuel: A Survey of Elasticities," Journal of Transport Economics and Policy, University of Bath, vol. 36(1), pages 1-25, January.
    15. Yu, Eden S. H. & Hwang, Been-Kwei, 1984. "The relationship between energy and GNP : Further results," Energy Economics, Elsevier, vol. 6(3), pages 186-190, July.
    16. Dan Ben-David & Robin L. Lumsdaine & David H. Papell, 2003. "Unit roots, postwar slowdowns and long-run growth: Evidence from two structural breaks," Empirical Economics, Springer, vol. 28(2), pages 303-319, April.
    17. Dahl, Carol & Sterner, Thomas, 1991. "Analysing gasoline demand elasticities: a survey," Energy Economics, Elsevier, vol. 13(3), pages 203-210, July.
    18. Liddle, Brantley, 2006. "How Linked are Energy and GDP: Reconsidering Energy-GDP Cointegration and Causality for Disaggregated OECD Country Data," MPRA Paper 52334, University Library of Munich, Germany.
    19. Alves, Denisard C. O. & De Losso da Silveira Bueno, Rodrigo, 2003. "Short-run, long-run and cross elasticities of gasoline demand in Brazil," Energy Economics, Elsevier, vol. 25(2), pages 191-199, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elżbieta Szaruga & Elżbieta Załoga, 2022. "Environmental Management from the Point of View of the Energy Intensity of Road Freight Transport and Shocks," IJERPH, MDPI, vol. 19(21), pages 1-22, November.
    2. Samir Saidi, 2021. "Freight transport and energy consumption: What impact on carbon dioxide emissions and environmental quality in MENA countries?," Economic Change and Restructuring, Springer, vol. 54(4), pages 1119-1145, November.
    3. Sheng, Mingyue & Sharp, Basil, 2019. "Aggregate road passenger travel demand in New Zealand: A seemingly unrelated regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 55-68.
    4. Saidi, Samir & Shahbaz, Muhammad & Akhtar, Pervaiz, 2018. "The long-run relationships between transport energy consumption, transport infrastructure, and economic growth in MENA countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 78-95.
    5. Nasreen, Samia & Mbarek, Mounir Ben & Atiq-ur-Rehman, Muhammad, 2020. "Long-run causal relationship between economic growth, transport energy consumption and environmental quality in Asian countries: Evidence from heterogeneous panel methods," Energy, Elsevier, vol. 192(C).
    6. Rentziou, Aikaterini & Gkritza, Konstantina & Souleyrette, Reginald R., 2012. "VMT, energy consumption, and GHG emissions forecasting for passenger transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 487-500.
    7. Ben Jebli, Mehdi & Belloumi, Mounir, 2017. "Investigation of the causal relationships between combustible renewables and waste consumption and CO2 emissions in the case of Tunisian maritime and rail transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 820-829.
    8. Guangyong Zhang & Lixin Tian & Wenbin Zhang & Xu Yan & Bingyue Wan & Zaili Zhen, 2020. "A Study on the Similarities and Differences of the Conventional Gasoline Spot Price Fluctuation Network between Different Harbors," Sustainability, MDPI, vol. 12(2), pages 1-25, January.
    9. Ben Jebli, Mehdi, 2015. "The Impact of Combustible Renewables and Waste Consumption and Transport on the Environmental Degradation: The Case of Tunisia," MPRA Paper 68038, University Library of Munich, Germany.
    10. Kakali Kanjilal & Sajal Ghosh, 2018. "Revisiting income and price elasticity of gasoline demand in India: new evidence from cointegration tests," Empirical Economics, Springer, vol. 55(4), pages 1869-1888, December.
    11. Samir, Saidi & Shahbaz, Muhammad & Akhtar, Pervaiz, 2018. "The Long-Run Relationship between Transport Energy Consumption and Transport Infrastructure on Economic Growth in MENA Countries," MPRA Paper 85037, University Library of Munich, Germany, revised 06 Mar 2018.
    12. Zolnik, Edmund J., 2018. "Effects of additional capacity on vehicle kilometers of travel in the U.S.: Evidence from National Household Travel Surveys," Journal of Transport Geography, Elsevier, vol. 66(C), pages 1-9.
    13. Humpe, Andreas & Gössling, Stefan & Haustein, Sonja, 2022. "Car careers: A socio-psychological evaluation of aspirational automobile ownership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 156-166.
    14. Ke Wang & Li Wang & Jianjun Zhang, 2024. "Towards a Comprehensive Framework for Regional Transportation Land Demand Forecasting: Empirical Study from Yangtze River Economic Belt, China," Land, MDPI, vol. 13(6), pages 1-22, June.
    15. Liddle, Brantley & Lung, Sidney, 2015. "The endogeneity of OECD gasoline taxes: Evidence from pair-wise, heterogeneous panel long-run causality tests," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 31-38.
    16. Liddle, Brantley, 2012. "The Systemic, Long-run Relation among Gasoline Demand, Gasoline Price, Income, and Vehicle Ownership in OECD Countries: Evidence from Panel Cointegration and Causality Modeling," MPRA Paper 52081, University Library of Munich, Germany.
    17. Yang Song & Kevin R. Gurney, 2020. "The Relationship between On-Road FFCO 2 Emissions and Socio-Economic/Urban Form Factors for Global Cities: Significance, Robustness and Implications," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    18. Liddle, Brantley & Lung, Sidney, 2015. "Revisiting energy consumption and GDP causality: Importance of a priori hypothesis testing, disaggregated data, and heterogeneous panels," Applied Energy, Elsevier, vol. 142(C), pages 44-55.
    19. Achour, Houda & Belloumi, Mounir, 2016. "Investigating the causal relationship between transport infrastructure, transport energy consumption and economic growth in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 988-998.
    20. Melo, Patricia C. & Ramli, Ahmad Razi, 2014. "Estimating fuel demand elasticities to evaluate CO2 emissions: Panel data evidence for the Lisbon Metropolitan Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 30-46.
    21. Kyoung-Min Lim & Myunghwan Kim & Chang Seob Kim & Seung-Hoon Yoo, 2012. "Short-Run and Long-Run Elasticities of Diesel Demand in Korea," Energies, MDPI, vol. 5(12), pages 1-10, November.
    22. Dalia M. Ibrahiem, 2018. "Road energy consumption, economic growth, population and urbanization in Egypt: cointegration and causality analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1053-1066, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jimy Ferrer Carbonell & Roberto Escalante Semerena, 2014. "Demanda de gasolina en la zona metropolitana del Valle de México: análisis empírico de la reducción del subsidio," Revista de Economía del Rosario, Universidad del Rosario, June.
    2. Scott, K. Rebecca, 2011. "Demand and Price Volatility: Rational Habits in International Gasoline Demand," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2q87432b, Department of Agricultural & Resource Economics, UC Berkeley.
    3. Bhaskara Rao, B. & Rao, Gyaneshwar, 2009. "Cointegration and the demand for gasoline," Energy Policy, Elsevier, vol. 37(10), pages 3978-3983, October.
    4. Jeyhun I. Mikayilov & Shahriyar Mukhtarov & Jeyhun Mammadov, 2020. "Gasoline Demand Elasticities at the Backdrop of Lower Oil Prices: Fuel-Subsidizing Country Case," Energies, MDPI, vol. 13(24), pages 1-18, December.
    5. Leiva, Benjamin & Liu, Zhongyuan, 2019. "Energy and economic growth in the USA two decades later: Replication and reanalysis," Energy Economics, Elsevier, vol. 82(C), pages 89-99.
    6. Rodrigues, Luciano & Bacchi, Mirian Rumenos Piedade, 2017. "Analyzing light fuel demand elasticities in Brazil using cointegration techniques," Energy Economics, Elsevier, vol. 63(C), pages 322-331.
    7. Scott, K. Rebecca, 2015. "Demand and price uncertainty: Rational habits in international gasoline demand," Energy, Elsevier, vol. 79(C), pages 40-49.
    8. Sari, Ramazan & Ewing, Bradley T. & Soytas, Ugur, 2008. "The relationship between disaggregate energy consumption and industrial production in the United States: An ARDL approach," Energy Economics, Elsevier, vol. 30(5), pages 2302-2313, September.
    9. Kakali Kanjilal & Sajal Ghosh, 2018. "Revisiting income and price elasticity of gasoline demand in India: new evidence from cointegration tests," Empirical Economics, Springer, vol. 55(4), pages 1869-1888, December.
    10. Baranzini, Andrea & Weber, Sylvain, 2013. "Elasticities of gasoline demand in Switzerland," Energy Policy, Elsevier, vol. 63(C), pages 674-680.
    11. Hasanov, Mübariz, 2015. "The demand for transport fuels in Turkey," Energy Economics, Elsevier, vol. 51(C), pages 125-134.
    12. Raghoo, Pravesh & Surroop, Dinesh, 2020. "Price and income elasticities of oil demand in Mauritius: An empirical analysis using cointegration method," Energy Policy, Elsevier, vol. 140(C).
    13. Cosimo Magazzino, 2015. "Energy consumption and GDP in Italy: cointegration and causality analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(1), pages 137-153, February.
    14. Tsani, Stela Z., 2010. "Energy consumption and economic growth: A causality analysis for Greece," Energy Economics, Elsevier, vol. 32(3), pages 582-590, May.
    15. Warr, B.S. & Ayres, R.U., 2010. "Evidence of causality between the quantity and quality of energy consumption and economic growth," Energy, Elsevier, vol. 35(4), pages 1688-1693.
    16. Shahiduzzaman, Md & Alam, Khorshed, 2012. "Cointegration and causal relationships between energy consumption and output: Assessing the evidence from Australia," Energy Economics, Elsevier, vol. 34(6), pages 2182-2188.
    17. Kanjilal, Kakali & Ghosh, Sajal, 2013. "Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks," Energy Policy, Elsevier, vol. 56(C), pages 509-515.
    18. Rahman, Mohammad Mafizur & Mamun, Shamsul Arifeen Khan, 2016. "Energy use, international trade and economic growth nexus in Australia: New evidence from an extended growth model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 806-816.
    19. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Ethanol demand under the flex-fuel technology regime in Brazil," Energy Economics, Elsevier, vol. 33(6), pages 1146-1154.
    20. Santos, Gervásio F., 2013. "Fuel demand in Brazil in a dynamic panel data approach," Energy Economics, Elsevier, vol. 36(C), pages 229-240.

    More about this item

    Keywords

    Transport demand; Energy consumption and development; Cointegration; Granger-causality; CAFE program;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:52080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.