IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/112588.html
   My bibliography  Save this paper

The information content of sentiment indices for forecasting Value at Risk and Expected Shortfall in equity markets

Author

Listed:
  • Naimoli, Antonio

Abstract

The aim of this paper is to investigate the impact of public sentiment on tail risk forecasting. In this framework, we extend the Realized Exponential GARCH model to directly incorporate information from realized volatility measures and exogenous variables. Several indices related to social media and journal articles regarding the economy and stock market volatility are considered as potential drivers of volatility dynamics. An application to the prediction of daily Value at Risk and Expected Shortfall for the Standard & Poor's 500 index provides evidence that combining the information content of realized volatility and sentiment measures can lead to significant accuracy gains in forecasting tail risk.

Suggested Citation

  • Naimoli, Antonio, 2022. "The information content of sentiment indices for forecasting Value at Risk and Expected Shortfall in equity markets," MPRA Paper 112588, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:112588
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/112588/8/MPRA_paper_112588.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/117221/16/VaR_ES_EPU.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asgharian, Hossein & Christiansen, Charlotte & Hou, Ai Jun, 2015. "Effects of macroeconomic uncertainty on the stock and bond markets," Finance Research Letters, Elsevier, vol. 13(C), pages 10-16.
    2. Feng Ma & M. I. M. Wahab & Jing Liu & Li Liu, 2018. "Is economic policy uncertainty important to forecast the realized volatility of crude oil futures?," Applied Economics, Taylor & Francis Journals, vol. 50(18), pages 2087-2101, April.
    3. Pástor, Ľuboš & Veronesi, Pietro, 2013. "Political uncertainty and risk premia," Journal of Financial Economics, Elsevier, vol. 110(3), pages 520-545.
    4. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    5. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    6. Peter Reinhard Hansen & Zhuo Huang, 2016. "Exponential GARCH Modeling With Realized Measures of Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 269-287, April.
    7. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    8. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    9. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    10. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    11. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    12. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
    13. Xu, Yan & Wang, Xinyu & Liu, Hening, 2021. "Quantile-based GARCH-MIDAS: Estimating value-at-risk using mixed-frequency information," Finance Research Letters, Elsevier, vol. 43(C).
    14. Christian Conrad & Karin Loch, 2015. "Anticipating Long‐Term Stock Market Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1090-1114, November.
    15. Li, Yu-Ning & Zhang, Yi & Zhang, Caiya, 2019. "Statistical Inference For Measurement Equation Selection In The Log-Realgarch Model," Econometric Theory, Cambridge University Press, vol. 35(5), pages 943-977, October.
    16. Chan, Yue-Cheong & Saffar, Walid & Wei, K.C. John, 2021. "How economic policy uncertainty affects the cost of raising equity capital: Evidence from seasoned equity offerings," Journal of Financial Stability, Elsevier, vol. 53(C).
    17. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    18. Hossein Asgharian & Ai Jun Hou & Farrukh Javed, 2013. "The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH‐MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(7), pages 600-612, November.
    19. Yu, Xiaoling & Huang, Yirong, 2021. "The impact of economic policy uncertainty on stock volatility: Evidence from GARCH–MIDAS approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    20. Fabio Fornari & Antonio Mele, 2013. "Financial Volatility and Economic Activity," Journal of Financial Management, Markets and Institutions, Società editrice il Mulino, issue 2, pages 155-198, December.
    21. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Kyle J. Kost, 2019. "Policy News and Stock Market Volatility," NBER Working Papers 25720, National Bureau of Economic Research, Inc.
    22. Naimoli, Antonio & Gerlach, Richard & Storti, Giuseppe, 2022. "Improving the accuracy of tail risk forecasting models by combining several realized volatility estimators," Economic Modelling, Elsevier, vol. 107(C).
    23. Liu, Li & Zhang, Tao, 2015. "Economic policy uncertainty and stock market volatility," Finance Research Letters, Elsevier, vol. 15(C), pages 99-105.
    24. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    25. Chahine, Salim & Daher, Mai & Saade, Samer, 2021. "Doing good in periods of high uncertainty: Economic policy uncertainty, corporate social responsibility, and analyst forecast error," Journal of Financial Stability, Elsevier, vol. 56(C).
    26. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    27. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
    28. Dorion, Christian, 2016. "Option Valuation with Macro-Finance Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(4), pages 1359-1389, August.
    29. Richard Gerlach & Antonio Naimoli & Giuseppe Storti, 2020. "Time-varying parameters realized GARCH models for tracking attenuation bias in volatility dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 20(11), pages 1849-1878, November.
    30. Heejoon Han, 2015. "Asymptotic Properties of GARCH-X Processes," Journal of Financial Econometrics, Oxford University Press, vol. 13(1), pages 188-221.
    31. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2013. "Dynamic co-movements of stock market returns, implied volatility and policy uncertainty," Economics Letters, Elsevier, vol. 120(1), pages 87-92.
    32. Zhu, Sha & Liu, Qiuhong & Wang, Yan & Wei, Yu & Wei, Guiwu, 2019. "Which fear index matters for predicting US stock market volatilities: Text-counts or option based measurement?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    33. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    34. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naimoli, Antonio, 2023. "The information content of sentiment indices in forecasting Value at Risk and Expected Shortfall: a Complete Realized Exponential GARCH-X approach," International Economics, Elsevier, vol. 176(C).
    2. Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
    3. Naimoli, Antonio & Gerlach, Richard & Storti, Giuseppe, 2022. "Improving the accuracy of tail risk forecasting models by combining several realized volatility estimators," Economic Modelling, Elsevier, vol. 107(C).
    4. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    5. M. Karanasos & S. Yfanti & J. Hunter, 2022. "Emerging stock market volatility and economic fundamentals: the importance of US uncertainty spillovers, financial and health crises," Annals of Operations Research, Springer, vol. 313(2), pages 1077-1116, June.
    6. Antonio Naimoli & Giuseppe Storti, 2021. "Forecasting Volatility and Tail Risk in Electricity Markets," JRFM, MDPI, vol. 14(7), pages 1-17, June.
    7. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    8. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    9. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    10. Li, Tao & Ma, Feng & Zhang, Xuehua & Zhang, Yaojie, 2020. "Economic policy uncertainty and the Chinese stock market volatility: Novel evidence," Economic Modelling, Elsevier, vol. 87(C), pages 24-33.
    11. Richard Gerlach & Chao Wang, 2016. "Bayesian Semi-parametric Realized-CARE Models for Tail Risk Forecasting Incorporating Realized Measures," Papers 1612.08488, arXiv.org.
    12. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    13. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    14. Zhimin Wu & Guanghui Cai, 2024. "Can intraday data improve the joint estimation and prediction of risk measures? Evidence from a variety of realized measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1956-1974, September.
    15. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    16. Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
    17. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    18. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    19. Belcaid, Karim & El Ghini, Ahmed, 2019. "U.S., European, Chinese economic policy uncertainty and Moroccan stock market volatility," The Journal of Economic Asymmetries, Elsevier, vol. 20(C).
    20. Chao Wang & Richard Gerlach & Qian Chen, 2018. "A Semi-parametric Realized Joint Value-at-Risk and Expected Shortfall Regression Framework," Papers 1807.02422, arXiv.org, revised Jan 2021.

    More about this item

    Keywords

    Realized Exponential GARCH; sentiment indices; economic policy uncertainty; tail risk forecasting; risk management.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • E66 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General Outlook and Conditions
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:112588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.