IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/29309.html
   My bibliography  Save this paper

Financial volatility and economic activity

Author

Listed:
  • Fornari, Fabio
  • Mele, Antonio

Abstract

Does capital markets uncertainty affect the business cycle? We find that financial volatility predicts 30% of post-war economic activity in the United States, and that during the Great Moderation, aggregate stock market volatility explains, alone, up to 55% of real growth. In out- of-sample tests, we find that stock volatility helps predict turning points over and above traditional financial variables such as credit or term spreads, and other leading indicators. Combining stock volatility and the term spread leads to a proxy for (i) aggregate risk, (ii) risk-premiums and (iii) monetary policy, which is found to track, and anticipate, the business cycle. At the heart of our analysis is a notion of volatility based on a slowly changing measure of return variability. This volatility is designed to capture long-run uncertainty in capital markets, and is particularly successful at explaining trends in the economic activity at horizons of six months and one year.

Suggested Citation

  • Fornari, Fabio & Mele, Antonio, 2009. "Financial volatility and economic activity," LSE Research Online Documents on Economics 29309, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:29309
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/29309/
    File Function: Open access version.
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. John Y. Campbell, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    2. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    3. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Estrella, Arturo & Hardouvelis, Gikas A, 1991. " The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    6. Tobias Adrian & Joshua Rosenberg, 2008. "Stock Returns and Volatility: Pricing the Short-Run and Long-Run Components of Market Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2997-3030, December.
    7. Olivier Blanchard & John Simon, 2001. "The Long and Large Decline in U.S. Output Volatility," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 32(1), pages 135-174.
    8. Nicholas Barberis & Ming Huang & Tano Santos, 2001. "Prospect Theory and Asset Prices," The Quarterly Journal of Economics, Oxford University Press, vol. 116(1), pages 1-53.
    9. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters,in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
    10. James H. Stock & Mark W. Watson, 1993. "A Procedure for Predicting Recessions with Leading Indicators: Econometric Issues and Recent Experience," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 95-156 National Bureau of Economic Research, Inc.
    11. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    12. Mele, Antonio, 2007. "Asymmetric stock market volatility and the cyclical behavior of expected returns," Journal of Financial Economics, Elsevier, vol. 86(2), pages 446-478, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chris Florakis & Gianluigi Giorgioni & Alexandros Kostakis & Costas Milas, 2012. "The Impact of Stock Market Illiquidity on Real UK GDP Growth," Working Paper series 65_12, Rimini Centre for Economic Analysis.
    2. de Bondt, Gabe & Maddaloni, Angela & Peydró, José-Luis & Scopel, Silvia, 2010. "The euro area Bank Lending Survey matters: empirical evidence for credit and output growth," Working Paper Series 1160, European Central Bank.
    3. Chauvet, Marcelle & Senyuz, Zeynep & Yoldas, Emre, 2015. "What does financial volatility tell us about macroeconomic fluctuations?," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 340-360.
    4. Jovanović, Mario, 2011. "Does Monetary Policy Affect Stock Market Uncertainty? – Empirical Evidence from the United States," Ruhr Economic Papers 240, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    5. Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A comprehensive look at financial volatility prediction by economic variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 956-977, September.
    6. Choi, Sangyup, 2013. "Are the effects of Bloom’s uncertainty shocks robust?," Economics Letters, Elsevier, vol. 119(2), pages 216-220.
    7. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," CEPR Discussion Papers 11307, C.E.P.R. Discussion Papers.
    8. Danielsson, Jon & Valenzuela, Marcela & Zer, Ilknur, 2016. "Learning from history: volatility and financial crises," LSE Research Online Documents on Economics 66046, London School of Economics and Political Science, LSE Library.
    9. Nieto, Belén & Rubio, Gonzalo, 2011. "The volatility of consumption-based stochastic discount factors and economic cycles," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2197-2216, September.
    10. Todd E. Clark & Michael W. Mccracken, 2014. "Tests Of Equal Forecast Accuracy For Overlapping Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 415-430, April.
    11. Mario Jovanovic, 2011. "Does Monetary Policy Affect Stock Market Uncertainty? – Empirical Evidence from the United States," Ruhr Economic Papers 0240, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    12. Elena Andreou, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," University of Cyprus Working Papers in Economics 03-2016, University of Cyprus Department of Economics.
    13. repec:eee:ecmode:v:69:y:2018:i:c:p:301-312 is not listed on IDEAS
    14. Angelidis, Timotheos & Sakkas, Athanasios & Tessaromatis, Nikolaos, 2015. "Stock market dispersion, the business cycle and expected factor returns," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 265-279.
    15. di Mauro, Filippo & Fornari, Fabio & Mannucci, Dario, 2011. "Stock market firm-level information and real economic activity," Working Paper Series 1366, European Central Bank.
    16. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," Journal of Econometrics, Elsevier, vol. 193(2), pages 367-389.
    17. Terence Tai-Leung Chong & Shiyu Lin, 2017. "Predictive models for disaggregate stock market volatility," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 261-288, August.
    18. Mario Meichle & Angelo Ranaldo & Attilio Zanetti, 2011. "Do financial variables help predict the state of the business cycle in small open economies? Evidence from Switzerland," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 25(4), pages 435-453, December.
    19. repec:zbw:rwirep:0240 is not listed on IDEAS
    20. Marco Lombardi & Raphael A Espinoza & Fabio Fornari, 2009. "The Role of Financial Variables in Predicting Economic Activity in the Euro Area," IMF Working Papers 09/241, International Monetary Fund.
    21. Florackis, Chris & Giorgioni, Gianluigi & Kostakis, Alexandros & Milas, Costas, 2014. "On stock market illiquidity and real-time GDP growth," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 210-229.

    More about this item

    JEL classification:

    • F3 - International Economics - - International Finance
    • G3 - Financial Economics - - Corporate Finance and Governance
    • J1 - Labor and Demographic Economics - - Demographic Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:29309. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (LSERO Manager). General contact details of provider: http://edirc.repec.org/data/lsepsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.