IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/21996.html
   My bibliography  Save this paper

Just Starting Out: Learning and Equilibrium in a New Market

Author

Listed:
  • Ulrich Doraszelski
  • Gregory Lewis
  • Ariel Pakes

Abstract

We document the evolution of the newly created market for frequency response within the UK electricity system over a six-year period. Firms competed in price while facing considerable initial uncertainty about market demand and rival behavior. We show that over time prices stabilized, converging to a rest point that is consistent with equilibrium play, and then adjusted to subsequent changes in the market quite quickly. We draw on models of fictitious play and adaptive learning to analyze how this convergence occurs and show that these models predict behavior better than Nash equilibrium prior to convergence.

Suggested Citation

  • Ulrich Doraszelski & Gregory Lewis & Ariel Pakes, 2016. "Just Starting Out: Learning and Equilibrium in a New Market," NBER Working Papers 21996, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:21996
    Note: IO PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w21996.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dan Bernhardt & Bart Taub, 2015. "Learning about common and private values in oligopoly," RAND Journal of Economics, RAND Corporation, vol. 46(1), pages 66-85, March.
    2. Rothschild, Michael, 1974. "A two-armed bandit theory of market pricing," Journal of Economic Theory, Elsevier, vol. 9(2), pages 185-202, October.
    3. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    4. Ernst Fehr & Jean-Robert Tyran, 2008. "Limited Rationality and Strategic Interaction: The Impact of the Strategic Environment on Nominal Inertia," Econometrica, Econometric Society, vol. 76(2), pages 353-394, March.
    5. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    6. Mirman, Leonard J & Samuelson, Larry & Urbano, Amparo, 1993. "Duopoly Signal Jamming," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(1), pages 129-149, January.
    7. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    8. Julian Kozlowski & Laura Veldkamp & Venky Venkateswaran, 2015. "The Tail that Wags the Economy: Belief-Driven Business Cycles and Persistent Stagnation," Working Papers 15-10, New York University, Leonard N. Stern School of Business, Department of Economics.
    9. Lee, Robin S. & Pakes, Ariel, 2009. "Multiple equilibria and selection by learning in an applied setting," Economics Letters, Elsevier, vol. 104(1), pages 13-16, July.
    10. Joskow, Paul L & Schmalensee, Richard & Bailey, Elizabeth M, 1998. "The Market for Sulfur Dioxide Emissions," American Economic Review, American Economic Association, vol. 88(4), pages 669-685, September.
    11. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    12. Julian Kozlowski & Laura Veldkamp & Venky Venkateswaran, 2020. "The Tail That Wags the Economy: Beliefs and Persistent Stagnation," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 2839-2879.
    13. Godfrey Keller & Sven Rady & Martin Cripps, 2005. "Strategic Experimentation with Exponential Bandits," Econometrica, Econometric Society, vol. 73(1), pages 39-68, January.
    14. Timothy C. Salmon, 2001. "An Evaluation of Econometric Models of Adaptive Learning," Econometrica, Econometric Society, vol. 69(6), pages 1597-1628, November.
    15. Michael H. Riordan, 1985. "Imperfect Information and Dynamic Conjectural Variations," RAND Journal of Economics, The RAND Corporation, vol. 16(1), pages 41-50, Spring.
    16. Akerlof, George A & Yellen, Janet L, 1985. "Can Small Deviations from Rationality Make Significant Differences to Economic Equilibria?," American Economic Review, American Economic Association, vol. 75(4), pages 708-720, September.
    17. Daniel A. Ackerberg, 2003. "Advertising, learning, and consumer choice in experience good markets: an empirical examination," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(3), pages 1007-1040, August.
    18. Andrew Sweeting, 2007. "Market Power In The England And Wales Wholesale Electricity Market 1995-2000," Economic Journal, Royal Economic Society, vol. 117(520), pages 654-685, April.
    19. C. Lanier Benkard, 2000. "Learning and Forgetting: The Dynamics of Aircraft Production," American Economic Review, American Economic Association, vol. 90(4), pages 1034-1054, September.
    20. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    21. Timothy G. Conley & Christopher R. Udry, 2010. "Learning about a New Technology: Pineapple in Ghana," American Economic Review, American Economic Association, vol. 100(1), pages 35-69, March.
    22. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    23. Fudenberg Drew & Kreps David M., 1993. "Learning Mixed Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 320-367, July.
    24. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    25. Chaim Fershtman & Ariel Pakes, 2012. "Dynamic Games with Asymmetric Information: A Framework for Empirical Work," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(4), pages 1611-1661.
    26. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    27. Sargent, Thomas J., 1993. "Bounded Rationality in Macroeconomics: The Arne Ryde Memorial Lectures," OUP Catalogue, Oxford University Press, number 9780198288695.
    28. Easley, David & Kiefer, Nicholas M, 1988. "Controlling a Stochastic Process with Unknown Parameters," Econometrica, Econometric Society, vol. 56(5), pages 1045-1064, September.
    29. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    30. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    31. Severin Borenstein & James B. Bushnell & Frank A. Wolak, 2002. "Measuring Market Inefficiencies in California's Restructured Wholesale Electricity Market," American Economic Review, American Economic Association, vol. 92(5), pages 1376-1405, December.
    32. Camerer, Colin F. & Ho, Teck-Hua & Chong, Juin-Kuan, 2002. "Sophisticated Experience-Weighted Attraction Learning and Strategic Teaching in Repeated Games," Journal of Economic Theory, Elsevier, vol. 104(1), pages 137-188, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Erhao, 2021. "Empirical properties and identification of adaptive learning models in behavioral game theory," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 798-821.
    2. Funai, Naoki, 2022. "Reinforcement learning with foregone payoff information in normal form games," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 638-660.
    3. Naoki Funai, 2019. "Convergence results on stochastic adaptive learning," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 907-934, November.
    4. Victor Aguirregabiria & Jihye Jeon, 2020. "Firms’ Beliefs and Learning: Models, Identification, and Empirical Evidence," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(2), pages 203-235, March.
    5. Jakub Bielawski & Thiparat Chotibut & Fryderyk Falniowski & Michal Misiurewicz & Georgios Piliouras, 2022. "Unpredictable dynamics in congestion games: memory loss can prevent chaos," Papers 2201.10992, arXiv.org, revised Jan 2022.
    6. Ron Borkovsky & Paul Ellickson & Brett Gordon & Victor Aguirregabiria & Pedro Gardete & Paul Grieco & Todd Gureckis & Teck-Hua Ho & Laurent Mathevet & Andrew Sweeting, 2015. "Multiplicity of equilibria and information structures in empirical games: challenges and prospects," Marketing Letters, Springer, vol. 26(2), pages 115-125, June.
    7. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    8. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    9. Wei Chen & Shu-Yu Liu & Chih-Han Chen & Yi-Shan Lee, 2011. "Bounded Memory, Inertia, Sampling and Weighting Model for Market Entry Games," Games, MDPI, vol. 2(1), pages 1-13, March.
    10. Xavier Gabaix & David Laibson & Guillermo Moloche & Stephen Weinberg, 2006. "Costly Information Acquisition: Experimental Analysis of a Boundedly Rational Model," American Economic Review, American Economic Association, vol. 96(4), pages 1043-1068, September.
    11. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    12. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.
    13. Jiayang Li & Zhaoran Wang & Yu Marco Nie, 2023. "Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice," Papers 2304.02500, arXiv.org, revised Feb 2024.
    14. Rosen Valchev & Cosmin Ilut, 2017. "Economic Agents as Imperfect Problem Solvers," 2017 Meeting Papers 1285, Society for Economic Dynamics.
    15. Cars Hommes, 2010. "The heterogeneous expectations hypothesis: some evidence from the lab," Post-Print hal-00753041, HAL.
    16. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    17. Shachat, Jason & Swarthout, J. Todd, 2012. "Learning about learning in games through experimental control of strategic interdependence," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 383-402.
    18. Stefano Balietti & Brennan Klein & Christoph Riedl, 2021. "Optimal design of experiments to identify latent behavioral types," Experimental Economics, Springer;Economic Science Association, vol. 24(3), pages 772-799, September.
    19. Frank Huettner & Tamer Boyacı & Yalçın Akçay, 2019. "Consumer Choice Under Limited Attention When Alternatives Have Different Information Costs," Operations Research, INFORMS, vol. 67(3), pages 671-699, May.
    20. Mario Bravo & Mathieu Faure, 2013. "Reinforcement Learning with Restrictions on the Action Set," AMSE Working Papers 1335, Aix-Marseille School of Economics, France, revised 01 Jul 2013.

    More about this item

    JEL classification:

    • D02 - Microeconomics - - General - - - Institutions: Design, Formation, Operations, and Impact
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • L10 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - General
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:21996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.