IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Improving the reliability of real-time Hodrick-Prescott filtering using survey forecasts

  • Jaqueson K. Galimberti
  • Marcelo L. Moura

Incorporating survey forecasts to a forecast-augmented Hodrick-Prescott filter, we evidence a considerable improvement to the reliability of US output-gap estimation in realtime. Odds of extracting wrong signals of output-gap estimates are found to reduce by almost a half, and the magnitude of revisions to these estimates accounts to only three fifths of the output-gap average size, usually an one-by-one ratio. We further analyze how this end-of-sample uncertainty evolves as time goes on and observations accumulate, showing that a 90% rate of correct assessments of the output-gap sign can be attained with five quarters of delay using survey forecasts.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.socialsciences.manchester.ac.uk/medialibrary/cgbcr/discussionpapers/dpcgbcr159.pdf
Download Restriction: no

Paper provided by Economics, The Univeristy of Manchester in its series Centre for Growth and Business Cycle Research Discussion Paper Series with number 159.

as
in new window

Length: 21 pages
Date of creation: 2011
Date of revision:
Handle: RePEc:man:cgbcrp:159
Contact details of provider: Postal: Manchester M13 9PL
Phone: (0)161 275 4868
Fax: (0)161 275 4812
Web page: http://www.socialsciences.manchester.ac.uk/subjects/economics/our-research/centre-for-growth-and-business-cycle-research/
More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
  2. King, R.G. & Rebelo, S.T., 1989. "Low Frequency Filtering And Real Business Cycles," RCER Working Papers 205, University of Rochester - Center for Economic Research (RCER).
  3. Michael Graff & Jan-Egbert Sturm, 2010. "The Information Content of Capacity Utilization Rates for Output Gap Estimates," KOF Working papers 10-269, KOF Swiss Economic Institute, ETH Zurich.
  4. João Valle e Azevedo, 2011. "A multivariate band‐pass filter for economic time series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(1), pages 1-30, 01.
  5. Morten O. Ravn & Harald Uhlig, 2002. "On adjusting the Hodrick-Prescott filter for the frequency of observations," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 371-375.
  6. Marcellino, Massimiliano & Musso, Alberto, 2011. "The reliability of real-time estimates of the euro area output gap," Economic Modelling, Elsevier, vol. 28(4), pages 1842-1856, July.
  7. Anthony Garratt & Kevin Lee & Emi Mise & Kalvinder Shields, 2008. "Real-Time Representations of the Output Gap," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 792-804, November.
  8. Timothy Cogley & James M. Nason, 1993. "Effects of the Hodrick-Prescott filter on trend and difference stationary time series: implications for business cycle research," Working Papers in Applied Economic Theory 93-01, Federal Reserve Bank of San Francisco.
  9. Gomez, Victor, 2001. "The Use of Butterworth Filters for Trend and Cycle Estimation in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 365-73, July.
  10. Keith Blackburn & Felipe Orduna & Martin Sola, 1995. "Exponential smoothing and spurious correlation: a note," Applied Economics Letters, Taylor & Francis Journals, vol. 2(3), pages 76-79.
  11. Tommaso Proietti, 2004. "On the Model-Based Interpretation of Filters and the Reliability of Trend-Cycle Estimates," Econometrics 0403007, EconWPA.
  12. Harvey, A.C. & Trimbur, T.M., 2001. "General Model-based Filters for Extracting Cycles and Trends in Economic Time Series," Cambridge Working Papers in Economics 0113, Faculty of Economics, University of Cambridge.
  13. Regina Kaiser & Agustín Maravall, 1999. "Estimation of the business cycle: A modified Hodrick-Prescott filter," Spanish Economic Review, Springer, vol. 1(2), pages 175-206.
  14. S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-Time Measurement of Business Conditions," PIER Working Paper Archive 07-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  15. Roy Batchelor, 2001. "How useful are the forecasts of intergovernmental agencies? The IMF and OECD versus the consensus," Applied Economics, Taylor & Francis Journals, vol. 33(2), pages 225-235.
  16. Athanasios Orphanides & Simon Van_Norden, 2000. "The Reliability of Output Gap Estimates in Real Time," Econometric Society World Congress 2000 Contributed Papers 0768, Econometric Society.
  17. Ehlgen, Jurgen, 1998. "Distortionary effects of the optimal Hodrick-Prescott filter," Economics Letters, Elsevier, vol. 61(3), pages 345-349, December.
  18. Stark, Tom & Croushore, Dean, 2002. "Reply to the comments on 'Forecasting with a real-time data set for macroeconomists'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 563-567, December.
  19. Mark W. Watson, 2007. "How accurate are real-time estimates of output trends and gaps?," Economic Quarterly, Federal Reserve Bank of Richmond, issue Spr, pages 143-161.
  20. João Valle e Azevedo, 2007. "A Multivariate Band-Pass Filter," Working Papers w200717, Banco de Portugal, Economics and Research Department.
  21. Agustín Maravall & Ana del Río, 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Banco de Espa�a Working Papers 0728, Banco de Espa�a.
  22. Sylvain Leduc & Keith Sill, 2010. "Expectations and economic fluctuations: an analysis using survey data," Working Papers 10-6, Federal Reserve Bank of Philadelphia.
  23. Marcellino, Massimiliano & Stock, James H & Watson, Mark W, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," CEPR Discussion Papers 4976, C.E.P.R. Discussion Papers.
  24. Canova, Fabio, 1998. "Detrending and business cycle facts: A user's guide," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 533-540, May.
  25. Canova, Fabio, 1998. "Detrending and business cycle facts," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 475-512, May.
  26. Ince, Onur & Papell, David H., 2013. "The (un)reliability of real-time output gap estimates with revised data," Economic Modelling, Elsevier, vol. 33(C), pages 713-721.
  27. Danthine, Jean-Pierre & Girardin, Michel, 1989. "Business cycles in Switzerland : A comparative study," European Economic Review, Elsevier, vol. 33(1), pages 31-50, January.
  28. Galimberti, Jaqueson K. & Moura, Marcelo L., 2013. "Taylor rules and exchange rate predictability in emerging economies," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 1008-1031.
  29. Dean Croushore & Tom Stark, 1999. "A real-time data set for macroeconomists," Working Papers 99-4, Federal Reserve Bank of Philadelphia.
  30. Valle e Azevedo, Joao & Koopman, Siem Jan & Rua, Antonio, 2006. "Tracking the Business Cycle of the Euro Area: A Multivariate Model-Based Bandpass Filter," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 278-290, July.
  31. Kajal Lahiri & Gultekin Isiklar, 2006. "How Far Ahead Can We Forecast? Evidence From Cross-country Surveys," Discussion Papers 06-04, University at Albany, SUNY, Department of Economics.
  32. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
  33. Gomez, Victor, 1999. "Three Equivalent Methods for Filtering Finite Nonstationary Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 109-16, January.
  34. Dean Croushore, 2008. "Frontiers of real-time data analysis," Working Papers 08-4, Federal Reserve Bank of Philadelphia.
  35. Ager, Philipp & Kappler, Marcus & Osterloh, Steffen, 2007. "The Accuracy and Efficiency of the Consensus Forecasts: A Further Application and Extension of the Pooled Approach," ZEW Discussion Papers 07-058, ZEW - Zentrum für Europäische Wirtschaftsforschung / Center for European Economic Research.
  36. Lawrence J. Christiano & Terry J. Fitzgerald, 1999. "The Band Pass Filter," NBER Working Papers 7257, National Bureau of Economic Research, Inc.
    • Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, 05.
  37. Pedersen, Torben Mark, 2001. "The Hodrick-Prescott filter, the Slutzky effect, and the distortionary effect of filters," Journal of Economic Dynamics and Control, Elsevier, vol. 25(8), pages 1081-1101, August.
  38. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-47, July-Sept.
  39. Mise, Emi & Kim, Tae-Hwan & Newbold, Paul, 2005. "On suboptimality of the Hodrick-Prescott filter at time series endpoints," Journal of Macroeconomics, Elsevier, vol. 27(1), pages 53-67, March.
  40. Christophe Planas & Alessandro Rossi, 2004. "Can inflation data improve the real-time reliability of output gap estimates?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(1), pages 121-133.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:man:cgbcrp:159. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marianne Sensier)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.