IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/6555.html
   My bibliography  Save this paper

A Multivariate Band-Pass Filter

Author

Listed:
  • Valle e Azevedo, João

Abstract

We develop a multivariate filter which is an optimal (in the mean squared error sense) approximation to the ideal filter that isolates a specified range of fluctuations in a time series, e.g., business cycle fluctuations in macroeconomic time series. This requires knowledge of the true second-order moments of the data. Otherwise these can be estimated and we show empirically that the method still leads to relevant improvements of the extracted signal, especially in the endpoints of the sample. Our filter is an extension of the univariate filter developed by Christiano and Fitzgerald (2003). Specifically, we allow an arbitrary number of covariates to be employed in the estimation of the signal. We illustrate the application of the filter by constructing a business cycle indicator for the U.S. economy. The filter can additionally be used in any similar signal extraction problem demanding accurate real-time estimates.

Suggested Citation

  • Valle e Azevedo, João, 2008. "A Multivariate Band-Pass Filter," MPRA Paper 6555, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:6555
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/6555/1/MPRA_paper_6555.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    2. Pierce, David A., 1980. "Data revisions with moving average seasonal adjustment procedures," Journal of Econometrics, Elsevier, vol. 14(1), pages 95-114, September.
    3. Gerhard Runstler, 2004. "Modelling phase shifts among stochastic cycles," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 232-248, June.
    4. Regina Kaiser & Agustín Maravall, 1999. "Estimation of the business cycle: A modified Hodrick-Prescott filter," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 175-206.
    5. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    6. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    7. Stock, James H. & Watson, Mark W., 1999. "Business cycle fluctuations in us macroeconomic time series," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 1, pages 3-64 Elsevier.
    8. Harvey, Andrew C. & Trimbur, Thomas M. & Van Dijk, Herman K., 2007. "Trends and cycles in economic time series: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 618-649, October.
    9. Gomez, Victor, 2001. "The Use of Butterworth Filters for Trend and Cycle Estimation in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 365-373, July.
    10. King, Robert G. & Rebelo, Sergio T., 1993. "Low frequency filtering and real business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 207-231.
    11. Valle e Azevedo, Joao & Koopman, Siem Jan & Rua, Antonio, 2006. "Tracking the Business Cycle of the Euro Area: A Multivariate Model-Based Bandpass Filter," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 278-290, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    2. Drew Creal & Siem Jan Koopman & Eric Zivot, 2010. "Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
    3. Mark W. Watson, 2007. "How accurate are real-time estimates of output trends and gaps?," Economic Quarterly, Federal Reserve Bank of Richmond, issue Spr, pages 143-161.
    4. João Valle e Azevedo & Ana Pereira, 2010. "Forecasting Inflation (and the Business Cycle?) with Monetary Aggregates," Working Papers w201024, Banco de Portugal, Economics and Research Department.
    5. Jaqueson K. Galimberti & Marcelo L. Moura, 2011. "Improving the reliability of real-time Hodrick-Prescott filtering using survey forecasts," Centre for Growth and Business Cycle Research Discussion Paper Series 159, Economics, The Univeristy of Manchester.
    6. Ana Sequeira, 2013. "Predicting aggregate returns using valuation ratios out-of-sample," Economic Bulletin and Financial Stability Report Articles, Banco de Portugal, Economics and Research Department.
    7. João Valle e Azevedo & Ana Pereira, 2013. "Macroeconomic Forecasting Using Low-Frequency Filters," Working Papers w201301, Banco de Portugal, Economics and Research Department.
    8. João Veríssimo LISBOA & Mário Gomes AUGUSTO & Juan PIÑEIRO-CHOUSA, 2015. "A Combined Approach To Access Short Term Changes In Economic Activity Of Portugal And Spain," Revista Galega de Economía, University of Santiago de Compostela. Faculty of Economics and Business., vol. 24(2), pages 99-110.

    More about this item

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:6555. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.