IDEAS home Printed from https://ideas.repec.org/p/lam/wpaper/15-09.html
   My bibliography  Save this paper

Can the Lasota(1977)’s model compete with the Mackey-Glass(1977)’s model in nonlinear modelling of financial time series?

Author

Listed:
  • Rachida Hennani

Abstract

The existence of nonlinear structures in the mean equation leads some authors [43, 44] to model financial time series by a Mackey-Glass equation, which is a differential equation with delay. We propose, in this paper, to compare the contributions of the [52]’s equation in the modelling of nonlinear structures in the mean equation with that of [48], published the same year but which may lead to different results in finance. Theoretical results point out that these two equations can describe mean dynamics’ of financial time series. These dynamics reflect the interaction between two types of agents, fundamentalists and chartists, that creates chaotic structures. To verify this, we apply these two models to two Europeans stock markets indices [CAC 40 and DAX 30] on the period [2003-2011]. We show the adequacy of these models, associated with a GARCH specification, to financial time series, comparatively to the ARMA-GARCH model. Moreover, it seems that the [48]’s model is more suitable than the [52]’s model for strongly leptokurtic financial time series: these findings are based on the backtesting results’ conducted on VaR forecasts’.

Suggested Citation

  • Rachida Hennani, 2015. "Can the Lasota(1977)’s model compete with the Mackey-Glass(1977)’s model in nonlinear modelling of financial time series?," Working Papers 15-09, LAMETA, Universtiy of Montpellier, revised Jun 2015.
  • Handle: RePEc:lam:wpaper:15-09
    as

    Download full text from publisher

    File URL: http://www.lameta.univ-montp1.fr/Documents/DR2015-09.pdf
    File Function: Revised version, 2015
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(2), pages 314-343, Spring.
    2. Kyrtsou, Catherine, 2008. "Re-examining the sources of heteroskedasticity: The paradigm of noisy chaotic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6785-6789.
    3. LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
    4. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    5. Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(2), pages 314-343, Spring.
    6. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    7. Kyrtsou, Catherine & Vorlow, Costas, 2009. "Modelling non-linear comovements between time series," Journal of Macroeconomics, Elsevier, vol. 31(1), pages 200-211, March.
    8. Katsumi Shimotsu, 2006. "Simple (but Effective) Tests Of Long Memory Versus Structural Breaks," Working Paper 1101, Economics Department, Queen's University.
    9. Elena-Ivona Dumitrescu & Christophe Hurlin & Vinson Pham, 2012. "Backtesting Value-at-Risk: From Dynamic Quantile to Dynamic Binary Tests," Finance, Presses universitaires de Grenoble, vol. 33(1), pages 79-112.
    10. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    11. Marisa Faggini, 2011. "Chaotic Time Series Analysis in Economics: Balance and Perspectives," Working papers 25, Former Department of Economics and Public Finance "G. Prato", University of Torino.
    12. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    13. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    14. Catherine Kyrtsou & Michel Terraza, 2003. "Is it Possible to Study Chaotic and ARCH Behaviour Jointly? Application of a Noisy Mackey–Glass Equation with Heteroskedastic Errors to the Paris Stock Exchange Returns Series," Computational Economics, Springer;Society for Computational Economics, vol. 21(3), pages 257-276, June.
    15. Kent Daniel & Sheridan Titman, 2006. "Market Reactions to Tangible and Intangible Information," Journal of Finance, American Finance Association, vol. 61(4), pages 1605-1643, August.
    16. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    17. Shimotsu, Katsumi, 2010. "Exact Local Whittle Estimation Of Fractional Integration With Unknown Mean And Time Trend," Econometric Theory, Cambridge University Press, vol. 26(02), pages 501-540, April.
    18. Catherine Kyrtsou & Michel Terraza, 2010. "Seasonal Mackey–Glass–GARCH process and short-term dynamics," Empirical Economics, Springer, vol. 38(2), pages 325-345, April.
    19. Kyrtsou, Catherine & Labys, Walter C., 2006. "Evidence for chaotic dependence between US inflation and commodity prices," Journal of Macroeconomics, Elsevier, vol. 28(1), pages 256-266, March.
    20. Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(2), pages 314-343, Spring.
    21. Hirshleifer, David & Subrahmanyam, Avanidhar & Titman, Sheridan, 2006. "Feedback and the success of irrational investors," Journal of Financial Economics, Elsevier, vol. 81(2), pages 311-338, August.
    22. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    23. Vega, Clara, 2006. "Stock price reaction to public and private information," Journal of Financial Economics, Elsevier, vol. 82(1), pages 103-133, October.
    24. Howroyd, T. D. & Russell, A. M., 1984. "Cournot oligopoly models with time delays," Journal of Mathematical Economics, Elsevier, vol. 13(2), pages 97-103, October.
    25. Seo, Byeongseon, 1999. "Distribution theory for unit root tests with conditional heteroskedasticity1," Journal of Econometrics, Elsevier, vol. 91(1), pages 113-144, July.
    26. Mackey, Michael C., 1989. "Commodity price fluctuations: Price dependent delays and nonlinearities as explanatory factors," Journal of Economic Theory, Elsevier, vol. 48(2), pages 497-509, August.
    27. Kyrtsou, Catherine & Terraza, Michel, 2002. "Stochastic chaos or ARCH effects in stock series?: A comparative study," International Review of Financial Analysis, Elsevier, vol. 11(4), pages 407-431.
    28. Gaunersdorfer, Andrea, 2000. "Endogenous fluctuations in a simple asset pricing model with heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 799-831, June.
    29. D. Guegan & L. Mercier, 2005. "Prediction in chaotic time series: methods and comparisons with an application to financial intra-day data," The European Journal of Finance, Taylor & Francis Journals, vol. 11(2), pages 137-150.
    30. Catherine Kyrtsou & Walter C. Labys & Michel Terraza, 2004. "Noisy chaotic dynamics in commodity markets," Empirical Economics, Springer, vol. 29(3), pages 489-502, September.
    31. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lam:wpaper:15-09. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Patricia Modat). General contact details of provider: http://edirc.repec.org/data/lamplfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.