IDEAS home Printed from https://ideas.repec.org/p/kud/kuiedp/1417.html
   My bibliography  Save this paper

Correlated equilibria in homogenous good Bertrand competition

Author

Listed:
  • Ole Jann

    (Department of Economics, Copenhagen University)

  • Christoph Schottmüller

    (Department of Economics, Copenhagen University)

Abstract

We show that there is a unique correlated equilibrium, identical to the unique Nash equilibrium, in the classic Bertrand oligopoly model with homogenous goods. This provides a theoretical underpinning for the so-called "Bertrand paradox" and also generalizes earlier results on mixed-strategy Nash equilibria. Our proof generalizes to asymmetric marginal costs and arbitrarily many players.

Suggested Citation

  • Ole Jann & Christoph Schottmüller, 2014. "Correlated equilibria in homogenous good Bertrand competition," Discussion Papers 14-17, University of Copenhagen. Department of Economics.
  • Handle: RePEc:kud:kuiedp:1417
    as

    Download full text from publisher

    File URL: http://www.econ.ku.dk/english/research/publications/wp/dp_2014/1417.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Atsushi Kajii & Stephen Morris, 1997. "The Robustness of Equilibria to Incomplete Information," Econometrica, Econometric Society, vol. 65(6), pages 1283-1310, November.
    2. Blume, Andreas, 2003. "Bertrand without fudge," Economics Letters, Elsevier, vol. 78(2), pages 167-168, February.
    3. Foster, Dean P. & Vohra, Rakesh V., 1997. "Calibrated Learning and Correlated Equilibrium," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 40-55, October.
    4. Sergiu Hart & Andreu Mas-Colell, 2000. "A Simple Adaptive Procedure Leading to Correlated Equilibrium," Econometrica, Econometric Society, vol. 68(5), pages 1127-1150, September.
    5. Fudenberg, Drew & Levine, David K., 1999. "Conditional Universal Consistency," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 104-130, October.
    6. Aumann, Robert J., 1974. "Subjectivity and correlation in randomized strategies," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 67-96, March.
    7. Milgrom, Paul & Roberts, John, 1990. "Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities," Econometrica, Econometric Society, vol. 58(6), pages 1255-1277, November.
    8. Sergiu Hart & David Schmeidler, 2013. "Existence Of Correlated Equilibria," World Scientific Book Chapters,in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 1, pages 3-14 World Scientific Publishing Co. Pte. Ltd..
    9. Liu, Luchuan, 1996. "Correlated Equilibrium of Cournot Oligopoly Competition," Journal of Economic Theory, Elsevier, vol. 68(2), pages 544-548, February.
    10. Baye, Michael R. & Morgan, John, 1999. "A folk theorem for one-shot Bertrand games," Economics Letters, Elsevier, vol. 65(1), pages 59-65, October.
    11. Todd R. Kaplan & David Wettstein, 2000. "The possibility of mixed-strategy equilibria with constant-returns-to-scale technology under Bertrand competition," Spanish Economic Review, Springer;Spanish Economic Association, vol. 2(1), pages 65-71.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Bertrand paradox; correlated equilibrium; price competition;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D43 - Microeconomics - - Market Structure, Pricing, and Design - - - Oligopoly and Other Forms of Market Imperfection
    • L13 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Oligopoly and Other Imperfect Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kud:kuiedp:1417. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Hoffmann). General contact details of provider: http://edirc.repec.org/data/okokudk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.