IDEAS home Printed from https://ideas.repec.org/p/imf/imfwpa/2015-269.html
   My bibliography  Save this paper

How External Factors Affect Domestic Economy: Nowcasting an Emerging Market

Author

Listed:
  • Mr. Serhat Solmaz
  • Marzie Taheri Sanjani

Abstract

External headwinds, together with domestic vulnerabilities, have loomed over the prospects of emerging markets in recent years. We propose an empirical toolbox to quantify the impact of external macro-financial shocks on domestic economies in parsimonious way. Our model is a Bayesian VAR consisting of two blocks representing home and foreign factors, which is particularly useful for small open economies. By exploiting the mixed-frequency nature of the model, we show how the toolbox can be used for “nowcasting” the output growth. The conditional forecast results illustrate that regular updates of external information, as well as domestic leading indicators, would significantly enhance the accuracy of forecasts. Moreover, the analysis of variance decompositions shows that external shocks are important drivers of the domestic business cycle.

Suggested Citation

  • Mr. Serhat Solmaz & Marzie Taheri Sanjani, 2015. "How External Factors Affect Domestic Economy: Nowcasting an Emerging Market," IMF Working Papers 2015/269, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:2015/269
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=43485
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    2. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    3. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    4. Michal Andrle & Mr. Roberto Garcia-Saltos & Giang Ho, 2013. "The Role of Domestic and External Shocks in Poland: Results from an Agnostic Estimation Procedure," IMF Working Papers 2013/220, International Monetary Fund.
    5. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
    6. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    7. Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    8. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    9. Lisandro Abrego & Pär Österholm, 2010. "External Linkages and Economic Growth in Colombia: Insights from a Bayesian VAR Model," The World Economy, Wiley Blackwell, vol. 33(12), pages 1788-1810, December.
    10. Huseyin Cagri Akkoyun & Mahmut Gunay, 2012. "Nowcasting Turkish GDP Growth," Working Papers 1233, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    11. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    12. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Auer & Emidio Cocozza & Andrea COlabella, 2016. "The financial systems in Russia and Turkey: recent developments and challenges," Questioni di Economia e Finanza (Occasional Papers) 358, Bank of Italy, Economic Research and International Relations Area.
    2. M. Tiunova G. & М. Тиунова Г., 2018. "Влияние Внешних Шоков На Российскую Экономику // The Impact Of External Shocks On The Russian Economy," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 22(4), pages 146-170.
    3. Sekar Utami Setiastuti, 2017. "Time-Varying Macroeconomic Impacts Of Global Economic Policy Uncertainty To A Small Open Economy: Evidence From Indonesia," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 20(2), pages 129-148, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    2. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    3. Ashwin Madhou & Tayushma Sewak & Imad Moosa & Vikash Ramiah, 2017. "GDP nowcasting: application and constraints in a small open developing economy," Applied Economics, Taylor & Francis Journals, vol. 49(38), pages 3880-3890, August.
    4. Pirschel, Inske, 2015. "Forecasting Euro Area Recessions in real-time with a mixed-frequency Bayesian VAR," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113031, Verein für Socialpolitik / German Economic Association.
    5. Silvia Miranda-Agrippino & Giovanni Ricco, 2021. "Bayesian local projections," Working Papers hal-03373574, HAL.
    6. Inske Pirschel & Maik H. Wolters, 2018. "Forecasting with large datasets: compressing information before, during or after the estimation?," Empirical Economics, Springer, vol. 55(2), pages 573-596, September.
    7. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    8. Valentina Aprigliano, 2020. "A large Bayesian VAR with a block‐specific shrinkage: A forecasting application for Italian industrial production," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1291-1304, December.
    9. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    10. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," MPRA Paper 39452, University Library of Munich, Germany.
    11. Pirschel, Inske, 2016. "Forecasting euro area recessions in real-time," Kiel Working Papers 2020, Kiel Institute for the World Economy (IfW Kiel).
    12. Florian Huber & Tamás Krisztin & Philipp Piribauer, 2017. "Forecasting Global Equity Indices Using Large Bayesian Vars," Bulletin of Economic Research, Wiley Blackwell, vol. 69(3), pages 288-308, July.
    13. Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
    14. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    15. Silvia Miranda-Agrippino & Giovanni Ricco, 2021. "The Transmission of Monetary Policy Shocks," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(3), pages 74-107, July.
    16. Joshua C. C. Chan, 2022. "Asymmetric conjugate priors for large Bayesian VARs," Quantitative Economics, Econometric Society, vol. 13(3), pages 1145-1169, July.
    17. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    18. Korobilis, Dimitris, 2016. "Prior selection for panel vector autoregressions," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 110-120.
    19. Troy D. Matheson, 2014. "New indicators for tracking growth in real time," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 51-71.
    20. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:2015/269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.