IDEAS home Printed from https://ideas.repec.org/p/ias/fpaper/10-wp504.html
   My bibliography  Save this paper

Modeling the Effects of Pasture Expansion on Emissions from Land-Use Change

Author

Abstract

We present a global agricultural greenhouse gas model that assesses emissions from land-use change. In addition to evaluating shifts in and out of crop production, we develop a pasture model to assess extensification and intensification of global livestock production based on herd size and stocking rate. We apply the model to a scenario that introduces a tax on methane emissions from cattle in the United States. The resulting expansion of pasture in the rest of the world leads to substantially higher emissions than without the tax. The yearly average emissions from the tax are 260 metric tons of CO2-equivalent.

Suggested Citation

  • Jerome Dumortier & Dermot J. Hayes & Miguel Carriquiry & Fengxia Dong & Xiaodong Du & Amani Elobeid & Jacinto F. Fabiosa & Kranti Mulik, 2010. "Modeling the Effects of Pasture Expansion on Emissions from Land-Use Change," Food and Agricultural Policy Research Institute (FAPRI) Publications (archive only) 10-wp504, Center for Agricultural and Rural Development (CARD) at Iowa State University.
  • Handle: RePEc:ias:fpaper:10-wp504
    as

    Download full text from publisher

    File URL: https://www.card.iastate.edu/products/publications/pdf/10wp504.pdf
    File Function: Full Text
    Download Restriction: no

    File URL: https://www.card.iastate.edu/products/publications/synopsis/?p=1123
    File Function: Online Synopsis
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jacinto F. Fabiosa & John C. Beghin & Fengxia Dong & JAmani Elobeid & Simla Tokgoz & Tun-Hsiang Yu, 2010. "Land Allocation Effects of the Global Ethanol Surge: Predictions from the International FAPRI Model," Land Economics, University of Wisconsin Press, vol. 86(4), pages 687-706.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amani E. Elobeid & Miguel A. Carriquiry & Jacinto F. Fabiosa, 2012. "Land-Use Change And Greenhouse Gas Emissions In The Fapri-Card Model System: Addressing Bias And Uncertainty," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-26.
    2. Nigel Key & Gregoire Tallard, 2012. "Mitigating methane emissions from livestock: a global analysis of sectoral policies," Climatic Change, Springer, vol. 112(2), pages 387-414, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Héctor M. Núñez & Andrés Trujillo-Barrera, 2015. "Impact of U.S. Biofuel Policy in the Presence of Drastic Climate Conditions," Working papers DTE 585, CIDE, División de Economía.
    2. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    3. Krissana Treesilvattanakul & Farzad Taheripour & Wallace E. Tyner, 2014. "Application of US and EU Sustainability Criteria to Analysis of Biofuels-Induced Land Use Change," Energies, MDPI, Open Access Journal, vol. 7(8), pages 1-10, August.
    4. Banse, M. & Sorda, G., 2010. "Impact of Different Biofuel Policy Options on Agricultural Production and Land Use in Germany," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 45, March.
    5. Hyunseok Kim & GianCarlo Moschini, 2018. "The Dynamics of Supply: U.S. Corn and Soybeans in the Biofuel Era," Center for Agricultural and Rural Development (CARD) Publications 18-wp579, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    6. Thomas Hertel & Jevgenijs Steinbuks & Uris Baldos, 2013. "Competition for land in the global bioeconomy," Agricultural Economics, International Association of Agricultural Economists, vol. 44(s1), pages 129-138, November.
    7. María Blanco & Marcel Adenäuer & Shailesh Shrestha & Arno Becker, 2012. "Methodology to assess EU Biofuel Policies: The CAPRI Approach," JRC Working Papers JRC80037, Joint Research Centre (Seville site).
    8. Felippe Cauê Serigati & Paulo Furquim De Azevedo & Mario Antonio Margarido, 2014. "How Integrated Are The Main Markets Ofethanol?," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 185, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    9. Nuñez, Hector M., 2016. "Biofuel Potential in Mexico: Land Use, Economic and Environmental Effects," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236067, Agricultural and Applied Economics Association.
    10. Serra, Teresa, 2011. "Volatility spillovers between food and energy markets: A semiparametric approach," Energy Economics, Elsevier, vol. 33(6), pages 1155-1164.
    11. Zingbagba, Mark & Nunes, Rubens & Fadairo, Muriel, 2020. "The impact of diesel price on upstream and downstream food prices: Evidence from São Paulo," Energy Economics, Elsevier, vol. 85(C).
    12. Dumortier, Jerome & Carriquiry, Miguel & Elobeid, Amani, 2021. "Where does all the biofuel go? Fuel efficiency gains and its effects on global agricultural production," Energy Policy, Elsevier, vol. 148(PA).
    13. Okwo, Adaora & Thomas, Valerie M., 2014. "Biomass feedstock contracts: Role of land quality and yield variability in near term feasibility," Energy Economics, Elsevier, vol. 42(C), pages 67-80.
    14. Kim, In Seck & Binfield, Julian & Patton, Myles & Zhang, Lichun & Moss, Joan, 2013. "Impact of increasing liquid biofuel usage on EU and UK agriculture," Food Policy, Elsevier, vol. 38(C), pages 59-69.
    15. repec:ags:iaae12:126735 is not listed on IDEAS
    16. Sobowale, Folakemi & Dicks, Michael R. & Campiche, Jody L., 2011. "Impact of United States Corn-based Ethanol Production on Land Use," 2011 Annual Meeting, February 5-8, 2011, Corpus Christi, Texas 98854, Southern Agricultural Economics Association.
    17. Nunez, H., 2018. "Building a Bioethanol Market in Mexico," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275921, International Association of Agricultural Economists.
    18. Cornelis Gardebroek & Jeffrey J. Reimer & Lieneke Baller, 2017. "The Impact of Biofuel Policies on Crop Acreages in Germany and France," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(3), pages 839-860, September.
    19. Brown, Jesslyn F. & Pervez, Md Shahriar, 2014. "Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture," Agricultural Systems, Elsevier, vol. 127(C), pages 28-40.
    20. Dodder, Rebecca S. & Kaplan, P. Ozge & Elobeid, Amani & Tokgoz, Simla & Secchi, Silvia & Kurkalova, Lyubov A., 2015. "Impact of energy prices and cellulosic biomass supply on agriculture, energy, and the environment: An integrated modeling approach," Energy Economics, Elsevier, vol. 51(C), pages 77-87.
    21. Sobowale, Flakkeh & Dicks, Michael R. & Adam, Brian D. & Campiche, Jody L., 2012. "Impact of United States Corn-Based Ethanol Production on Land Use," 2012 Annual Meeting, February 4-7, 2012, Birmingham, Alabama 119800, Southern Agricultural Economics Association.

    More about this item

    Keywords

    land-use change; greenhouse gas emissions; pasture expansion; pasture extensification.;
    All these keywords.

    JEL classification:

    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q17 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agriculture in International Trade
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ias:fpaper:10-wp504. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: https://edirc.repec.org/data/faiasus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.