IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v51y2015icp77-87.html
   My bibliography  Save this article

Impact of energy prices and cellulosic biomass supply on agriculture, energy, and the environment: An integrated modeling approach

Author

Listed:
  • Dodder, Rebecca S.
  • Kaplan, P. Ozge
  • Elobeid, Amani
  • Tokgoz, Simla
  • Secchi, Silvia
  • Kurkalova, Lyubov A.

Abstract

The accelerated growth in biofuel markets has both created and reinforced linkages between agriculture and energy. The evolution of biofuel markets over the next 10–20years and the implications for energy, agriculture, and the environment are uncertain. Building on an integrated agriculture–energy modeling framework, this study analyzes a baseline and three alternative scenarios: two scenarios based on energy prices (crude oil and natural gas) and one based on assumptions regarding cellulosic biomass availability. By examining the impact of scenarios driven by (a) changes in the energy sector and (b) changes in the agricultural sector, we can compare the differential effects on biofuels markets, commodity prices and quantities in each sector, and CO2 emissions. Scenario comparisons show biofuel markets affected more by crude oil prices than natural gas prices. However, higher natural gas prices shift the biofuel production mix away from corn-grain based to more cellulosic ethanol via multiple mechanisms. Alternatively, the scenario with no cellulosic feedstock lowers total ethanol production and raises ethanol and corn prices. In terms of environmental impacts, higher ethanol levels driven by higher oil prices lead to lower CO2 emissions. In comparison, the no cellulosic scenario results in the highest CO2 trajectory relative to the baseline.

Suggested Citation

  • Dodder, Rebecca S. & Kaplan, P. Ozge & Elobeid, Amani & Tokgoz, Simla & Secchi, Silvia & Kurkalova, Lyubov A., 2015. "Impact of energy prices and cellulosic biomass supply on agriculture, energy, and the environment: An integrated modeling approach," Energy Economics, Elsevier, vol. 51(C), pages 77-87.
  • Handle: RePEc:eee:eneeco:v:51:y:2015:i:c:p:77-87
    DOI: 10.1016/j.eneco.2015.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988315001826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2015.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacinto F. Fabiosa & John C. Beghin & Fengxia Dong & JAmani Elobeid & Simla Tokgoz & Tun-Hsiang Yu, 2010. "Land Allocation Effects of the Global Ethanol Surge: Predictions from the International FAPRI Model," Land Economics, University of Wisconsin Press, vol. 86(4), pages 687-706.
    2. Yeh, Sonia & Farrell, Alexander E. & Plevin, Richard J & Sanstad, Alan & Weyant, John, 2008. "Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model," Institute of Transportation Studies, Working Paper Series qt1td1g7qw, Institute of Transportation Studies, UC Davis.
    3. Sarica, Kemal & Tyner, Wallace E., 2013. "Analysis of US renewable fuels policies using a modified MARKAL model," Renewable Energy, Elsevier, vol. 50(C), pages 701-709.
    4. Stoorvogel, J. J. & Antle, J. M. & Crissman, C. C. & Bowen, W., 2004. "The tradeoff analysis model: integrated bio-physical and economic modeling of agricultural production systems," Agricultural Systems, Elsevier, vol. 80(1), pages 43-66, April.
    5. David J. Ramberg and John E. Parsons, 2012. "The Weak Tie Between Natural Gas and Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    6. Gardebroek, Cornelis & Hernandez, Manuel A., 2013. "Do energy prices stimulate food price volatility? Examining volatility transmission between US oil, ethanol and corn markets," Energy Economics, Elsevier, vol. 40(C), pages 119-129.
    7. Simla Tokgoz & Amani Elobeid & Jacinto Fabiosa & Dermot J. Hayes & Bruce A. Babcock & Tun-Hsiang (Edward) Yu & Fengxia Dong & Chad E. Hart, 2008. "Bottlenecks, Drought, and Oil Price Spikes: Impact on U.S. Ethanol and Agricultural Sectors," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(4), pages 604-622.
    8. Stephen P. A. Brown & Mine K. Yucel, 2008. "What Drives Natural Gas Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 45-60.
    9. Kretschmer, Bettina & Peterson, Sonja, 2010. "Integrating bioenergy into computable general equilibrium models -- A survey," Energy Economics, Elsevier, vol. 32(3), pages 673-686, May.
    10. Rebecca S. Dodder & Amani Elobeid & Timothy L. Johnson & P. Ozge Kaplan & Lyubov A. Kurkalova & Silvia Secchi & Simla Tokgoz, 2011. "Environmental Impacts of Emerging Biomass Feedstock Markets: Energy, Agriculture, and the Farmer," Center for Agricultural and Rural Development (CARD) Publications 11-wp526, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    11. Rajagopal, D. & Hochman, G. & Zilberman, D., 2011. "Indirect fuel use change (IFUC) and the lifecycle environmental impact of biofuel policies," Energy Policy, Elsevier, vol. 39(1), pages 228-233, January.
    12. Thompson, Wyatt & Whistance, Jarrett & Meyer, Seth, 2011. "Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions," Energy Policy, Elsevier, vol. 39(9), pages 5509-5518, September.
    13. Nazlioglu, Saban & Soytas, Ugur, 2011. "World oil prices and agricultural commodity prices: Evidence from an emerging market," Energy Economics, Elsevier, vol. 33(3), pages 488-496, May.
    14. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    15. Nazlioglu, Saban, 2011. "World oil and agricultural commodity prices: Evidence from nonlinear causality," Energy Policy, Elsevier, vol. 39(5), pages 2935-2943, May.
    16. Nazlioglu, Saban & Soytas, Ugur, 2012. "Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 34(4), pages 1098-1104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lang, Le Dang & Tiwari, Aviral Kumar & Hieu, Hoang Ngoc & Ha, Nguyen Minh & Gaur, Jighyasu, 2023. "The role of structural social capital in driving social-oriented sustainable agricultural entrepreneurship," Energy Economics, Elsevier, vol. 124(C).
    2. Yongxi Ma & Lu Zhang & Shixiong Song & Shuao Yu, 2022. "Impacts of Energy Price on Agricultural Production, Energy Consumption, and Carbon Emission in China: A Price Endogenous Partial Equilibrium Model Analysis," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    3. Vaillancourt, Kathleen & Bahn, Olivier & Levasseur, Annie, 2019. "The role of bioenergy in low-carbon energy transition scenarios: A case study for Quebec (Canada)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 24-34.
    4. Brinkman, Marnix L.J. & Wicke, Birka & Faaij, André P.C. & van der Hilst, Floor, 2019. "Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Chen, Qiu & Mirzabaev, Alisher, 2016. "Evaluating the Impacts of Traditional Biomass Energy Use on Agricultural Production in Sichuan, China," Discussion Papers 250213, University of Bonn, Center for Development Research (ZEF).
    6. Gouzaye, Amadou & Epplin, Francis M., 2016. "Land requirements, feedstock haul distance, and expected profit response to land use restrictions for switchgrass production," Energy Economics, Elsevier, vol. 58(C), pages 59-66.
    7. Piotr Gołasa & Wioletta Bieńkowska-Gołasa & Magdalena Golonko & Paulina Trębska & Piotr Gradziuk & Arkadiusz Gromada & Marcin Wysokiński, 2022. "Sensitivity of the Agribusiness Sector to Sudden Changes in the Prices of Energy Carriers on the Example of Poland: Current State and Challenges," Energies, MDPI, vol. 15(22), pages 1-10, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zingbagba, Mark & Nunes, Rubens & Fadairo, Muriel, 2020. "The impact of diesel price on upstream and downstream food prices: Evidence from São Paulo," Energy Economics, Elsevier, vol. 85(C).
    2. Cheng, Sheng & Cao, Yan, 2019. "On the relation between global food and crude oil prices: An empirical investigation in a nonlinear framework," Energy Economics, Elsevier, vol. 81(C), pages 422-432.
    3. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    4. Ahmadi, Maryam & Bashiri Behmiri, Niaz & Manera, Matteo, 2016. "How is volatility in commodity markets linked to oil price shocks?," Energy Economics, Elsevier, vol. 59(C), pages 11-23.
    5. Fasanya, Ismail & Akinbowale, Seun, 2019. "Modelling the return and volatility spillovers of crude oil and food prices in Nigeria," Energy, Elsevier, vol. 169(C), pages 186-205.
    6. Dalheimer, Bernhard & Herwartz, Helmut & Lange, Alexander, 2021. "The threat of oil market turmoils to food price stability in Sub-Saharan Africa," Energy Economics, Elsevier, vol. 93(C).
    7. Lucotte, Yannick, 2016. "Co-movements between crude oil and food prices: A post-commodity boom perspective," Economics Letters, Elsevier, vol. 147(C), pages 142-147.
    8. Guellil, Mohammed Seghir & Benbouziane, Mohamed, 2018. "Volatility Linkages between Agricultural Commodity Prices, Oil Prices and Real USD Exchange Rate || Vínculos de volatilidad entre precios de productos agrícolas, precios del petróleo y tipo de cambio ," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 71-83, Diciembre.
    9. Vo, Long Hai & Le, Thai-Ha, 2021. "Eatery, energy, environment and economic system, 1970–2017: Understanding volatility spillover patterns in a global sample," Energy Economics, Elsevier, vol. 100(C).
    10. Guo, Jin & Tanaka, Tetsuji, 2022. "Energy security versus food security: An analysis of fuel ethanol- related markets using the spillover index and partial wavelet coherence approaches," Energy Economics, Elsevier, vol. 112(C).
    11. Ladislav Kristoufek & Karel Janda & David Zilberman, 2012. "Mutual Responsiveness of Biofuels, Fuels and Food Prices," CAMA Working Papers 2012-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    12. Ladislav Kristoufek & Karel Janda & David Zilberman, 2013. "Non-linear price transmission between biofuels, fuels and food commodities," Working Papers IES 2013/16, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Oct 2013.
    13. Duc Hong Vo & Tan Ngoc Vu & Anh The Vo & Michael McAleer, 2019. "Modeling the Relationship between Crude Oil and Agricultural Commodity Prices," Energies, MDPI, vol. 12(7), pages 1-41, April.
    14. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    15. Papież, Monika, 2014. "A dynamic analysis of causality between prices of corn, crude oil and ethanol," MPRA Paper 56540, University Library of Munich, Germany.
    16. Hanif, Waqas & Areola Hernandez, Jose & Shahzad, Syed Jawad Hussain & Yoon, Seong-Min, 2021. "Tail dependence risk and spillovers between oil and food prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 195-209.
    17. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    18. Hasanov, Akram Shavkatovich & Do, Hung Xuan & Shaiban, Mohammed Sharaf, 2016. "Fossil fuel price uncertainty and feedstock edible oil prices: Evidence from MGARCH-M and VIRF analysis," Energy Economics, Elsevier, vol. 57(C), pages 16-27.
    19. Maitra, Debasish & Guhathakurta, Kousik & Kang, Sang Hoon, 2021. "The good, the bad and the ugly relation between oil and commodities: An analysis of asymmetric volatility connectedness and portfolio implications," Energy Economics, Elsevier, vol. 94(C).
    20. Cao, Yan & Cheng, Sheng, 2021. "Impact of COVID-19 outbreak on multi-scale asymmetric spillovers between food and oil prices," Resources Policy, Elsevier, vol. 74(C).

    More about this item

    Keywords

    Biofuel; Ethanol; Agriculture; Natural gas; Crude oil; Cellulosic; Carbon dioxide;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q11 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Aggregate Supply and Demand Analysis; Prices
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:51:y:2015:i:c:p:77-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.