IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2015-014.html
   My bibliography  Save this paper

Generalized Exogenous Processes in DSGE: A Bayesian Approach

Author

Listed:
  • Alexander Meyer-Gohde
  • Daniel Neuhoff

Abstract

The Reversible Jump Markov Chain Monte Carlo (RJMCMC) method can enhance Bayesian DSGE estimation by sampling from a posterior distribution spanning potentially nonnested models with parameter spaces of different dimensionality. We use the method to jointly sample from an ARMA process of unknown order along with the associated parameters. We apply the method to the technology process in a canonical neoclassical growth model using post war US GDP data and find that the posterior decisively rejects the standard AR(1) assumption in favor of higher order processes. While the posterior contains significant uncertainty regarding the exact order, it concentrates posterior density on hump-shaped impulse responses. A negative response of hours to a positive technology shock is within the posterior credible set when noninvertible MA representations are admitted.

Suggested Citation

  • Alexander Meyer-Gohde & Daniel Neuhoff, 2015. "Generalized Exogenous Processes in DSGE: A Bayesian Approach," SFB 649 Discussion Papers SFB649DP2015-014, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2015-014
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2015-014.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    2. S. P. Brooks & P. Giudici & G. O. Roberts, 2003. "Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 3-39, January.
    3. Lan, Hong & Meyer-Gohde, Alexander, 2014. "Solvability of perturbation solutions in DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 366-388.
    4. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    5. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    6. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    7. repec:dau:papers:123456789/6040 is not listed on IDEAS
    8. Philippe, Anne, 2006. "Bayesian analysis of autoregressive moving average processes with unknown orders," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1904-1923, December.
    9. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    10. Harald Uhlig, 2004. "Do Technology Shocks Lead to a Fall in Total Hours Worked?," Journal of the European Economic Association, MIT Press, vol. 2(2-3), pages 361-371, 04/05.
    11. Meyer-Gohde, Alexander, 2010. "Linear rational-expectations models with lagged expectations: A synthetic method," Journal of Economic Dynamics and Control, Elsevier, vol. 34(5), pages 984-1002, May.
    12. Olivier Cappé & Christian P. Robert & Tobias Rydén, 2003. "Reversible jump, birth‐and‐death and more general continuous time Markov chain Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 679-700, August.
    13. Olivier Jean Blanchard & Stanley Fischer, 1989. "Lectures on Macroeconomics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262022834, December.
    14. Meyer-Gohde, Alexander & Neuhoff, Daniel, 2015. "Solving and estimating linearized DSGE models with VARMA shock processes and filtered data," Economics Letters, Elsevier, vol. 133(C), pages 89-91.
    15. Ricardo S. Ehlers & Stephen P. Brooks, 2008. "Adaptive Proposal Construction for Reversible Jump MCMC," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 677-690, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    2. Ryan Chahrour & Sanjay K. Chugh & Tristan Potter, 2014. "Searching for Wages in an Estimated Labor Matching Model," Boston College Working Papers in Economics 867, Boston College Department of Economics, revised 20 Dec 2016.
    3. Böhl, Gregor, 2021. "Efficient solution and computation of models with occasionally binding constraints," IMFS Working Paper Series 148, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    4. Daniel Neuhoff, 2015. "Dynamics of Real Per Capita GDP," SFB 649 Discussion Papers SFB649DP2015-039, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    2. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    3. Haroon Mumtaz & Francesco Zanetti, 2012. "Neutral Technology Shocks And The Dynamics Of Labor Input: Results From An Agnostic Identification," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(1), pages 235-254, February.
    4. Zheng Liu, 2009. "Sources of the Great Moderation: Shocks, Frictions, or Monetary Policy?," 2009 Meeting Papers 379, Society for Economic Dynamics.
    5. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    6. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    7. Federico S. Mandelman & Francesco Zanetti, 2008. "Technology shocks, employment, and labor market frictions," FRB Atlanta Working Paper 2008-10, Federal Reserve Bank of Atlanta.
    8. Gospodinov, Nikolay & Maynard, Alex & Pesavento, Elena, 2011. "Sensitivity of Impulse Responses to Small Low-Frequency Comovements: Reconciling the Evidence on the Effects of Technology Shocks," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 455-467.
    9. Rujin, Svetlana, 2019. "What are the effects of technology shocks on international labor markets?," Ruhr Economic Papers 806, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    10. Martial Dupaigne & Patrick Fève, 2010. "Hours Worked and Permanent Technology Shocks in Open Economies," Open Economies Review, Springer, vol. 21(1), pages 69-86, February.
    11. Silvia Miranda-Agrippino & Sinem Hacioglu Hoke & Kristina Bluwstein, 2018. "When Creativity Strikes: News Shocks and Business Cycle Fluctuations," Discussion Papers 1823, Centre for Macroeconomics (CFM).
    12. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    13. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2010. "The effects of technology shocks on hours and output: a robustness analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 755-773.
    14. Peter Ireland & Scott Schuh, 2008. "Productivity and U.S. Macroeconomic Performance: Interpreting the Past and Predicting the Future with a Two-Sector Real Business Cycle Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(3), pages 473-492, July.
    15. Eric M. Leeper & Todd B. Walker & Shu‐Chun Susan Yang, 2013. "Fiscal Foresight and Information Flows," Econometrica, Econometric Society, vol. 81(3), pages 1115-1145, May.
    16. Hikaru Saijo, 2019. "Technology Shocks and Hours Revisited: Evidence from Household Data," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 31, pages 347-362, January.
    17. Haroon Mumtaz & Francesco Zanetti, 2015. "Labor Market Dynamics: A Time-Varying Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(3), pages 319-338, June.
    18. Mandelman, Federico S. & Zanetti, Francesco, 2014. "Flexible prices, labor market frictions and the response of employment to technology shocks," Labour Economics, Elsevier, vol. 26(C), pages 94-102.
    19. Tervala, Juha, 2008. "Technology Shocks and Employment in Open Economies," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 1, pages 1-27.
    20. Kascha, Christian & Mertens, Karel, 2009. "Business cycle analysis and VARMA models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 267-282, February.

    More about this item

    Keywords

    Bayesian analysis; Dynamic stochastic general equilibrium model; Model evaluation; ARMA; Reversible Jump Markov Chain Monte Carlo;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2015-014. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RDC-Team The email address of this maintainer does not seem to be valid anymore. Please ask RDC-Team to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.