IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01632766.html
   My bibliography  Save this paper

Measuring the Liquidity Part of Volume

Author

Listed:
  • Serge Darolles

    (DRM - Dauphine Recherches en Management - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Gaëlle Le Fol

    (DRM - Dauphine Recherches en Management - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Gulten Mero

Abstract

Based on the concept that the presence of liquidity frictions can increase the daily traded volume, we develop an extended version of the mixture of distribution hypothesis model (MDH) along the lines of Tauchen and Pitts (1983) to measure the liquidity portion of volume. Our approach relies on a structural definition of liquidity frictions arising from the theoretical framework of Grossman and Miller (1988), which explains how liquidity shocks affect the way in which information is incorporated into daily trading characteristics. In addition, we propose an econometric setup exploiting the volatility–volume relationship to filter the liquidity portion of volume and infer the presence of liquidity frictions using daily data. Finally, based on FTSE 100 stocks, we show that the extended MDH model proposed here outperforms that of Andersen (1996) and that the liquidity frictions are priced in the cross-section of stock returns.

Suggested Citation

  • Serge Darolles & Gaëlle Le Fol & Gulten Mero, 2015. "Measuring the Liquidity Part of Volume," Post-Print hal-01632766, HAL.
  • Handle: RePEc:hal:journl:hal-01632766
    DOI: 10.1016/j.jbankfin.2014.09.007
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Acharya, Viral V. & Pedersen, Lasse Heje, 2005. "Asset pricing with liquidity risk," Journal of Financial Economics, Elsevier, vol. 77(2), pages 375-410, August.
    2. Getmansky, Mila & Lo, Andrew W. & Makarov, Igor, 2004. "An econometric model of serial correlation and illiquidity in hedge fund returns," Journal of Financial Economics, Elsevier, vol. 74(3), pages 529-609, December.
    3. Shalen, Catherine T, 1993. "Volume, Volatility, and the Dispersion of Beliefs," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 405-434.
    4. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    5. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    6. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    7. De Long, J Bradford, et al, 1990. "Positive Feedback Investment Strategies and Destabilizing Rational Speculation," Journal of Finance, American Finance Association, vol. 45(2), pages 379-395, June.
    8. Markus K. Brunnermeier & Lasse Heje Pedersen, 2009. "Market Liquidity and Funding Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 22(6), pages 2201-2238, June.
    9. Lakonishok, Josef & Smidt, Seymour, 1986. "Volume for Winners and Losers: Taxation and Other Motives for Stock Trading," Journal of Finance, American Finance Association, vol. 41(4), pages 951-974, September.
    10. Foster, F Douglas & Viswanathan, S, 1993. "Variations in Trading Volume, Return Volatility, and Trading Costs: Evidence on Recent Price Formation Models," Journal of Finance, American Finance Association, vol. 48(1), pages 187-211, March.
    11. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    12. Harris, Lawrence, 1986. "Cross-Security Tests of the Mixture of Distributions Hypothesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(1), pages 39-46, March.
    13. repec:bla:jfinan:v:43:y:1988:i:3:p:617-37 is not listed on IDEAS
    14. Richardson, Matthew & Smith, Tom, 1994. "A Direct Test of the Mixture of Distributions Hypothesis: Measuring the Daily Flow of Information," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(1), pages 101-116, March.
    15. Morse, Dale, 1980. "Asymmetrical Information in Securities Markets and Trading Volume," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(5), pages 1129-1148, December.
    16. Vladimir Borgy & Julien Idier & Gaëlle Le Fol, 2010. "Liquidity Problems in the FX Liquid Market," Working Papers halshs-00539985, HAL.
    17. Hendershott, Terrence & Riordan, Ryan, 2013. "Algorithmic Trading and the Market for Liquidity," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(4), pages 1001-1024, August.
    18. Blake LeBaron, "undated". "Persistence of the Dow Jones Index on Rising Volume," Working papers _006, University of Wisconsin - Madison.
    19. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    20. Borgy, V. & Idier, J. & Le Fol, G., 2010. "Liquidity problems in the FX liquid market: Ask for the "BIL"," Working papers 279, Banque de France.
    21. Serge Darolles & Gaëlle Le Fol, 2003. "Trading Volume and Arbitrage," Working Papers 2003-46, Center for Research in Economics and Statistics.
    22. Bialkowski, Jedrzej & Darolles, Serge & Le Fol, Gaëlle, 2008. "Improving VWAP strategies: A dynamic volume approach," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1709-1722, September.
    23. Zhiyao Chen & Robert T. Daigler, 2008. "An examination of the complementary volume–volatility information theories," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(10), pages 963-992, October.
    24. repec:dau:papers:123456789/5574 is not listed on IDEAS
    25. Grossman, S.J. & Miller, M.H., 1988. "Liquidity And Market Structure," Papers 88, Princeton, Department of Economics - Financial Research Center.
    26. Menkveld, Albert J., 2013. "High frequency trading and the new market makers," Journal of Financial Markets, Elsevier, vol. 16(4), pages 712-740.
    27. Lo, Andrew W & Wang, Jiang, 2000. "Trading Volume: Definitions, Data Analysis, and Implications of Portfolio Theory," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 257-300.
    28. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    29. Jinliang Li & Chunchi Wu, 2006. "Daily Return Volatility, Bid-Ask Spreads, and Information Flow: Analyzing the Information Content of Volume," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2697-2740, September.
    30. Harris, Milton & Raviv, Artur, 1993. "Differences of Opinion Make a Horse Race," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 473-506.
    31. Copeland, Thomas E., 1977. "A Probability Model of Asset Trading," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 563-578, November.
    32. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    33. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    34. Datar, Vinay T. & Y. Naik, Narayan & Radcliffe, Robert, 1998. "Liquidity and stock returns: An alternative test," Journal of Financial Markets, Elsevier, vol. 1(2), pages 203-219, August.
    35. Richardson, Gordon & Sefcik, Stephan E. & Thompson, Rex, 1986. "A test of dividend irrelevance using volume reactions to a change in dividend policy," Journal of Financial Economics, Elsevier, vol. 17(2), pages 313-333, December.
    36. Westerfield, Randolph, 1977. "The Distribution of Common Stock Price Changes: An Application of Transactions Time and Subordinated Stochastic Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(5), pages 743-765, December.
    37. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," The Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    38. Domowitz, Ian & Wang, Jianxin, 1994. "Auctions as algorithms : Computerized trade execution and price discovery," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 29-60, January.
    39. Copeland, Thomas E, 1976. "A Model of Asset Trading under the Assumption of Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 31(4), pages 1149-1168, September.
    40. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio A. F. Santos, 2021. "Bayesian Estimation for High-Frequency Volatility Models in a Time Deformed Framework," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 455-479, February.
    2. Maria Ludovica Drudi & Giulio Carlo Venturi, 2023. "Assessing the liquidity premium in the Italian bond market," Questioni di Economia e Finanza (Occasional Papers) 795, Bank of Italy, Economic Research and International Relations Area.
    3. Gulten Mero & Serge Darolles & Gaëlle Le Fol, 2015. "Financial Market Liquidity: Who Is Acting Strategically?," THEMA Working Papers 2015-14, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    4. Fredj Jawadi & Waël Louhichi & Abdoulkarim Idi Cheffou & Rivo Randrianarivony, 2016. "Intraday jumps and trading volume: a nonlinear Tobit specification," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1167-1186, November.
    5. Ying Jiang & Neil Kellard & Xiaoquan Liu, 2020. "Night trading and market quality: Evidence from Chinese and US precious metal futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1486-1507, October.
    6. Darolles, Serge & Le Fol, Gaëlle & Mero, Gulten, 2017. "Mixture of distribution hypothesis: Analyzing daily liquidity frictions and information flows," Journal of Econometrics, Elsevier, vol. 201(2), pages 367-383.
    7. Ranaldo, Angelo & de Magistris, Paolo Santucci, 2022. "Liquidity in the global currency market," Journal of Financial Economics, Elsevier, vol. 146(3), pages 859-883.
    8. Angelo Ranaldo & Paolo Santucci de Magistris, 2018. "Trading Volume, Illiquidity and Commonalities in FX Markets," Working Papers on Finance 1823, University of St. Gallen, School of Finance, revised Oct 2019.
    9. Eduardo Bered Fernandes Vieira & Tiago Pascoal Filomena, 2020. "Liquidity Constraints for Portfolio Selection Based on Financial Volume," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 1055-1077, December.
    10. Xu, Liao & Gao, Han & Shi, Yukun & Zhao, Yang, 2020. "The heterogeneous volume-volatility relations in the exchange-traded fund market: Evidence from China," Economic Modelling, Elsevier, vol. 85(C), pages 400-408.
    11. Priyanka Naik & Y. V. Reddy, 2021. "Stock Market Liquidity: A Literature Review," SAGE Open, , vol. 11(1), pages 21582440209, January.
    12. Zied Ftiti & Fredj Jawadi & Waël Louhichi, 2017. "Modelling the relationship between future energy intraday volatility and trading volume with wavelet," Applied Economics, Taylor & Francis Journals, vol. 49(20), pages 1981-1993, April.
    13. Staer, Arsenio & Sottile, Pedro, 2018. "Equivalent volume and comovement," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 143-157.
    14. Li, Jie & Ren, Da & Feng, Xu & Zhang, Yongjie, 2016. "Network of listed companies based on common shareholders and the prediction of market volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 508-521.
    15. Liu, Bin & Xia, XiangYang & Xiao, Wen, 2020. "Public information content and market information efficiency: A comparison between China and the U.S," China Economic Review, Elsevier, vol. 60(C).
    16. Francisco Javier Vasquez-Tejos & Prosper Lamothe Fernández, 2020. "Liquidity Risk and Stock Return in Latin American Emerging Markets," Investigación & Desarrollo, Universidad Privada Boliviana, vol. 20(1), pages 57-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serge Darolles & Gaëlle Le Fol & Gulten Mero, 2010. "When Market Illiquidity Generates Volumes," Working Papers halshs-00536046, HAL.
    2. Yamani, Ehab, 2023. "Return–volume nexus in financial markets: A survey of research," Research in International Business and Finance, Elsevier, vol. 65(C).
    3. Serge Darolles & Gaëlle Le Fol, 2003. "Trading Volume and Arbitrage," Working Papers 2003-46, Center for Research in Economics and Statistics.
    4. Wang, Junbo & Wu, Chunchi, 2015. "Liquidity, credit quality, and the relation between volatility and trading activity: Evidence from the corporate bond market," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 183-203.
    5. Chuang, Wen-I & Liu, Hsiang-Hsi & Susmel, Rauli, 2012. "The bivariate GARCH approach to investigating the relation between stock returns, trading volume, and return volatility," Global Finance Journal, Elsevier, vol. 23(1), pages 1-15.
    6. Jiang Wang, 2002. "Trading Volume and Asset Prices," Annals of Economics and Finance, Society for AEF, vol. 3(2), pages 299-359, November.
    7. Slim, Skander & Dahmene, Meriam, 2016. "Asymmetric information, volatility components and the volume–volatility relationship for the CAC40 stocks," Global Finance Journal, Elsevier, vol. 29(C), pages 70-84.
    8. Gulten Mero & Serge Darolles & Gaëlle Le Fol, 2015. "Financial Market Liquidity: Who Is Acting Strategically?," THEMA Working Papers 2015-14, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    9. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    10. Carroll, Rachael & Kearney, Colm, 2015. "Testing the mixture of distributions hypothesis on target stocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 1-14.
    11. Chen, Gong-meng & Firth, Michael & Rui, Oliver M, 2001. "The Dynamic Relation between Stock Returns, Trading Volume, and Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 153-173, August.
    12. Darolles, Serge & Le Fol, Gaëlle & Mero, Gulten, 2017. "Mixture of distribution hypothesis: Analyzing daily liquidity frictions and information flows," Journal of Econometrics, Elsevier, vol. 201(2), pages 367-383.
    13. Bhaumik, S. & Karanasos, M. & Kartsaklas, A., 2016. "The informative role of trading volume in an expanding spot and futures market," Journal of Multinational Financial Management, Elsevier, vol. 35(C), pages 24-40.
    14. Do, Hung Xuan & Brooks, Robert & Treepongkaruna, Sirimon & Wu, Eliza, 2014. "How does trading volume affect financial return distributions?," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 190-206.
    15. Gagnon, Louis & Karolyi, G. Andrew, 2009. "Information, Trading Volume, and International Stock Return Comovements: Evidence from Cross-Listed Stocks," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(4), pages 953-986, August.
    16. Abhinava Tripathi, 2021. "The Arrival of Information and Price Adjustment Across Extreme Quantiles: Global Evidence," IIM Kozhikode Society & Management Review, , vol. 10(1), pages 7-19, January.
    17. Kausik Chaudhuri & Alok Kumar, 2015. "A Markov-Switching Model for Indian Stock Price and Volume," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 14(3), pages 239-257, December.
    18. Farag, Hisham & Cressy, Robert, 2011. "Do regulatory policies affect the flow of information in emerging markets?," Research in International Business and Finance, Elsevier, vol. 25(3), pages 238-254, September.
    19. Niklas Wagner & Terry Marsh, 2005. "Surprise volume and heteroskedasticity in equity market returns," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 153-168.
    20. Sinha, Pankaj & Agnihotri, Shalini, 2014. "Investigating impact of volatility persistence, market asymmetry and information inflow on volatility of stock indices using bivariate GJR-GARCH," MPRA Paper 58303, University Library of Munich, Germany.

    More about this item

    Keywords

    Volatility-volume relationship; Mixture of distribution hypothesis; Information-based trading; Liquidity shocks; GMM tests; Liquidity arbitrage;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01632766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.