IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02979999.html

Measuring the Liquidity Part of Volume

Author

Listed:
  • Gulten Mero

    (THEMA - Théorie économique, modélisation et applications - CNRS - Centre National de la Recherche Scientifique - CY - CY Cergy Paris Université)

  • S. Darolles

    (THEMA - Théorie économique, modélisation et applications - CNRS - Centre National de la Recherche Scientifique - CY - CY Cergy Paris Université)

  • Gaëlle Le Fol

    (THEMA - Théorie économique, modélisation et applications - CNRS - Centre National de la Recherche Scientifique - CY - CY Cergy Paris Université)

Abstract

Based on the concept that the presence of liquidity frictions can increase the daily traded volume, we develop an extended version of the mixture of distribution hypothesis model (MDH) along the lines of Tauchen and Pitts (1983) to measure the liquidity portion of volume. Our approach relies on a structural definition of liquidity frictions arising from the theoretical framework of Grossman and Miller (1988), which explains how liquidity shocks affect the way in which information is incorporated into daily trading characteristics. In addition, we propose an econometric setup exploiting the volatility–volume relationship to filter the liquidity portion of volume and infer the presence of liquidity frictions using daily data. Finally, based on FTSE 100 stocks, we show that the extended MDH model proposed here outperforms that of Andersen (1996) and that the liquidity frictions are priced in the cross-section of stock returns.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Gulten Mero & S. Darolles & Gaëlle Le Fol, 2015. "Measuring the Liquidity Part of Volume," Post-Print hal-02979999, HAL.
  • Handle: RePEc:hal:journl:hal-02979999
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio A. F. Santos, 2021. "Bayesian Estimation for High-Frequency Volatility Models in a Time Deformed Framework," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 455-479, February.
    2. Eduardo Bered Fernandes Vieira & Tiago Pascoal Filomena, 2020. "Liquidity Constraints for Portfolio Selection Based on Financial Volume," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 1055-1077, December.
    3. Maria Ludovica Drudi & Giulio Carlo Venturi, 2023. "Assessing the liquidity premium in the Italian bond market," Questioni di Economia e Finanza (Occasional Papers) 795, Bank of Italy, Economic Research and International Relations Area.
    4. Xu, Liao & Gao, Han & Shi, Yukun & Zhao, Yang, 2020. "The heterogeneous volume-volatility relations in the exchange-traded fund market: Evidence from China," Economic Modelling, Elsevier, vol. 85(C), pages 400-408.
    5. Priyanka Naik & Y. V. Reddy, 2021. "Stock Market Liquidity: A Literature Review," SAGE Open, , vol. 11(1), pages 21582440209, January.
    6. Eduardo Bered Fernandes Vieira & Tiago Pascoal Filomena & Leonardo Riegel Sant’anna & Miguel A. Lejeune, 2023. "Liquidity-constrained index tracking optimization models," Annals of Operations Research, Springer, vol. 330(1), pages 73-118, November.
    7. Zied Ftiti & Fredj Jawadi & Waël Louhichi, 2017. "Modelling the relationship between future energy intraday volatility and trading volume with wavelet," Applied Economics, Taylor & Francis Journals, vol. 49(20), pages 1981-1993, April.
    8. Staer, Arsenio & Sottile, Pedro, 2018. "Equivalent volume and comovement," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 143-157.
    9. Gulten Mero & Serge Darolles & Gaëlle Le Fol, 2015. "Financial Market Liquidity: Who Is Acting Strategically?," Thema Working Papers 2015-14, THEMA (Théorie Economique, Modélisation et Applications), CY Cergy-Paris University, ESSEC and CNRS.
    10. Li, Jie & Ren, Da & Feng, Xu & Zhang, Yongjie, 2016. "Network of listed companies based on common shareholders and the prediction of market volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 508-521.
    11. Fredj Jawadi & Waël Louhichi & Abdoulkarim Idi Cheffou & Rivo Randrianarivony, 2016. "Intraday jumps and trading volume: a nonlinear Tobit specification," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1167-1186, November.
    12. Ying Jiang & Neil Kellard & Xiaoquan Liu, 2020. "Night trading and market quality: Evidence from Chinese and US precious metal futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1486-1507, October.
    13. Liu, Bin & Xia, XiangYang & Xiao, Wen, 2020. "Public information content and market information efficiency: A comparison between China and the U.S," China Economic Review, Elsevier, vol. 60(C).
    14. Darolles, Serge & Le Fol, Gaëlle & Mero, Gulten, 2017. "Mixture of distribution hypothesis: Analyzing daily liquidity frictions and information flows," Journal of Econometrics, Elsevier, vol. 201(2), pages 367-383.
    15. Francisco Javier Vasquez-Tejos & Prosper Lamothe Fernández, 2020. "Liquidity Risk and Stock Return in Latin American Emerging Markets," Investigación & Desarrollo, Universidad Privada Boliviana, vol. 20(2), pages 57-74.
    16. Ranaldo, Angelo & de Magistris, Paolo Santucci, 2022. "Liquidity in the global currency market," Journal of Financial Economics, Elsevier, vol. 146(3), pages 859-883.
    17. Angelo Ranaldo & Paolo Santucci de Magistris, 2018. "Trading Volume, Illiquidity and Commonalities in FX Markets," Working Papers on Finance 1823, University of St. Gallen, School of Finance, revised Oct 2019.

    More about this item

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02979999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.