IDEAS home Printed from https://ideas.repec.org/p/ekd/002672/4219.html
   My bibliography  Save this paper

Are GDP Revisions Predictable? Evidence for Switzerland

Author

Listed:
  • Boriss Siliverstovs

Abstract

This study presents a model that delivers more accurate forecasts of the revised rather initial estimates of the quarterly GDP growth rate in Switzerland during the period of the recent financial crisis. The key explanation to our findings is that our model, capitalizing on the information contained in the Business Tendency Surveys, is able to predict future revisions of the initial estimates. Our findings imply that there seems to be a scope for improvement of how preliminary estimates of the quarterly GDP growth rate are produced in Switzerland.A mixed-frequency small-scale dynamic factor model is used for forecasting. The model parameters are estimated by means of the Kalman filter. This model combines GDP growth available at a quarterly frequency and monthly indicators based on firms' surveys. The different publication lags are also taken into account.In this paper we constructed a small-scale mixed-frequency dynamic factor model using data for Switzerland. The factor model combines the quarterly GDP growth rate and the monthly survey indicators. We evaluate the forecasting performance of the model during the period of the recent financial crisis when accurate information on the current stance of the economy is especially in high demand. We demonstrate that this factor model produces more accurate forecasts than the alternative benchmark models such as a random-walk model and a first-order autoregressive model. More importantly, the factor model produces more accurate forecasts of the revised rather than first-published estimates of the GDP growth rate. We demonstrate that this remarkable finding could be explained by the fact that the factor model is useful for predicting not only directions of future GDP revisions but also their magnitude, at least during the period under scrutiny. We conclude that there seems to be a scope for improvement of how estimates of the GDP growth rate are produced in Switzerland: in particularly, in the direction of reducing volatility of subsequent revisions.

Suggested Citation

  • Boriss Siliverstovs, 2012. "Are GDP Revisions Predictable? Evidence for Switzerland," EcoMod2012 4219, EcoMod.
  • Handle: RePEc:ekd:002672:4219
    as

    Download full text from publisher

    File URL: http://ecomod.net/system/files/Siliverstovs_EcoMod.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    3. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    4. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    5. Nicolas Cuche-Curti & Pamela Hall & Attilio Zanetti, 2009. "Swiss GDP revisions: A monetary policy perspective," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2008(2), pages 183-213.
    6. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    7. Maximo Camacho & Gabriel Perez Quiros, 2011. "Spain‐Sting: Spain Short‐Term Indicator Of Growth," Manchester School, University of Manchester, vol. 79(s1), pages 594-616, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boriss Siliverstovs, 2016. "The franc shock and Swiss GDP: how long does it take to start feeling the pain?," Applied Economics, Taylor & Francis Journals, vol. 48(36), pages 3432-3441, August.
    2. Ronald Indergand & Stefan Leist, 2014. "A Real-Time Data Set for Switzerland," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(IV), pages 331-352, December.
    3. Katharina Glass, 2018. "Predictability of Euro Area Revisions," Macroeconomics and Finance Series 201801, University of Hamburg, Department of Socioeconomics.
    4. Boriss Siliverstovs, 2017. "Short-term forecasting with mixed-frequency data: a MIDASSO approach," Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
    5. Caroline Flodberg & Pär Österholm, 2017. "A Statistical Anaysis of Revisions in Swedish National Accounts Data," Finnish Economic Papers, Finnish Economic Association, vol. 28(1), pages 10-33, Autumn.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
    2. Máximo Camacho & Rafael Doménech, 2012. "MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
    3. Deicy J. Cristiano & Manuel D. Hernández & José David Pulido, 2012. "Pronósticos de corto plazo en tiempo real para la actividad económica colombiana," Borradores de Economia 724, Banco de la Republica de Colombia.
    4. Peter Fuleky & Carl S. Bonham, 2013. "Forecasting with Mixed Frequency Samples: The Case of Common Trends," Working Papers 201305, University of Hawaii at Manoa, Department of Economics.
    5. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
    6. Christian Glocker & Serguei Kaniovski, 2022. "Macroeconometric forecasting using a cluster of dynamic factor models," Empirical Economics, Springer, vol. 63(1), pages 43-91, July.
    7. Peter Fuleky & Carl Bonham, 2010. "Forecasting Based on Common Trends in Mixed Frequency Samples," Working Papers 2010-17R1, University of Hawaii Economic Research Organization, University of Hawaii at Manoa, revised Jul 2013.
    8. Martin Feldkircher & Florian Huber & Josef Schreiner & Marcel Tirpák & Peter Tóth & Julia Wörz, 2015. "Bridging the information gap: small-scale nowcasting models of GDP growth for selected CESEE countries," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 2, pages 56-75.
    9. Boriss Siliverstovs, 2016. "The franc shock and Swiss GDP: how long does it take to start feeling the pain?," Applied Economics, Taylor & Francis Journals, vol. 48(36), pages 3432-3441, August.
    10. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    11. Christian Glocker & Philipp Wegmueller, 2020. "Business cycle dating and forecasting with real-time Swiss GDP data," Empirical Economics, Springer, vol. 58(1), pages 73-105, January.
    12. Ángel Cuevas & Enrique Quilis, 2012. "A factor analysis for the Spanish economy," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(3), pages 311-338, September.
    13. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    14. Martin Feldkircher & Florian Huber & Josef Schreiner & Julia Woerz & Marcel Tirpak & Peter Toth, 2015. "Small-scale nowcasting models of GDP for selected CESEE countries," Working and Discussion Papers WP 4/2015, Research Department, National Bank of Slovakia.
    15. Ana Arencibia Pareja & Ana Gomez-Loscos & Mercedes de Luis López & Gabriel Perez-Quiros, 2020. "A Short Term Forecasting Model for the Spanish GDP and itsDemand Components," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 43(85), pages 1-30.
    16. Klaus Friesenbichler & Christian Glocker & Werner Hölzl & Philipp Wegmüller, 2018. "Ein neues Modell für die kurzfristige Prognose der Herstellung von Waren und der Ausrüstungsinvestitionen," WIFO Monatsberichte (monthly reports), WIFO, vol. 91(9), pages 651-661, September.
    17. Cecilia Frale & Valentina Raponi, 2011. "Revisions in ocial data and forecasting," Working Papers LuissLab 1194, Dipartimento di Economia e Finanza, LUISS Guido Carli.
    18. Valentina Raponi & Cecilia Frale, 2014. "Revisions in official data and forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 451-472, August.
    19. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    20. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.

    More about this item

    Keywords

    Switzerland; Business cycles; Forecasting; nowcasting;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ekd:002672:4219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Theresa Leary (email available below). General contact details of provider: https://edirc.repec.org/data/ecomoea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.