IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/16842.html
   My bibliography  Save this paper

The Politics of the Paycheck Protection Program

Author

Listed:
  • Lambert, Thomas
  • Mishra, Prachi

Abstract

This paper examines the incidence of special interests in the allocation of loans through the Paycheck Protection Program (PPP). We find that lobbying at the firm and industry levels helps obtain larger PPP loans during the pandemic. We also observe that PPP lending is more responsive to lobbying in ideologically less conservative areas as well as in industries less affected by the pandemic. Our findings are consistent with the notion that lobbying firms have experience in navigating administrative and policy complexity and can thus benefit more from aid provided under the PPP.

Suggested Citation

  • Lambert, Thomas & Mishra, Prachi, 2021. "The Politics of the Paycheck Protection Program," CEPR Discussion Papers 16842, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:16842
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP16842
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kempf, Elisabeth & Luo, Mancy & Schäfer, Larissa & Tsoutsoura, Margarita, 2023. "Political ideology and international capital allocation," Journal of Financial Economics, Elsevier, vol. 148(2), pages 150-173.
    2. Morris H. DeGroot & Julia Mortera, 1991. "Optimal Linear Opinion Pools," Management Science, INFORMS, vol. 37(5), pages 546-558, May.
    3. Engelberg, Joseph & Manski, Charles F. & Williams, Jared, 2009. "Comparing the Point Predictions and Subjective Probability Distributions of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 30-41.
    4. Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023. "On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates," Journal of Econometrics, Elsevier, vol. 237(2).
    5. Bartlett, Robert P. & Morse, Adair, 2021. "Small-Business Survival Capabilities and Fiscal Programs: Evidence from Oakland," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 56(7), pages 2500-2544, November.
    6. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    7. Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016. "Dynamic prediction pools: An investigation of financial frictions and forecasting performance," Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
    8. Dingel, Jonathan I. & Neiman, Brent, 2020. "How many jobs can be done at home?," Journal of Public Economics, Elsevier, vol. 189(C).
    9. Coibion, Olivier & Gorodnichenko, Yuriy & Weber, Michael, 2020. "Political Polarization and Expected Economic Outcomes," IZA Discussion Papers 13823, Institute of Labor Economics (IZA).
    10. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    11. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    12. Laurent Bouton & Julia Cagé & Edgard Dewitte & Vincent Pons, 2021. "Small Campaign Donors," SciencePo Working papers Main hal-03878175, HAL.
    13. repec:cdl:econwp:qt9h51c373 is not listed on IDEAS
    14. Francis X. Diebold & Anthony S. Tay & Kenneth F. Wallis, 1997. "Evaluating Density Forecasts of Inflation: The Survey of Professional Forecasters," NBER Working Papers 6228, National Bureau of Economic Research, Inc.
    15. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
    16. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    17. Duchin, Ran & Hackney, John, 2021. "Buying the Vote? The Economics of Electoral Politics and Small-Business Loans," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 56(7), pages 2439-2473, November.
    18. Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2020. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1092-1110, July.
    19. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
    20. Sergey Chernenko & Nathan Kaplan & Asani Sarkar & David S. Scharfstein, 2023. "Applications or Approvals: What Drives Racial Disparities in the Paycheck Protection Program?," NBER Working Papers 31172, National Bureau of Economic Research, Inc.
    21. Keane, Michael P & Runkle, David E, 1990. "Testing the Rationality of Price Forecasts: New Evidence from Panel Data," American Economic Review, American Economic Association, vol. 80(4), pages 714-735, September.
    22. Autor, David & Cho, David & Crane, Leland D. & Goldar, Mita & Lutz, Byron & Montes, Joshua & Peterman, William B. & Ratner, David & Villar, Daniel & Yildirmaz, Ahu, 2022. "An evaluation of the Paycheck Protection Program using administrative payroll microdata," Journal of Public Economics, Elsevier, vol. 211(C).
    23. Graham Elliott & Dalia Ghanem & Fabian Krüger, 2016. "Forecasting Conditional Probabilities of Binary Outcomes under Misspecification," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 742-755, October.
    24. Emir Shuford & Arthur Albert & H. Edward Massengill, 1966. "Admissible probability measurement procedures," Psychometrika, Springer;The Psychometric Society, vol. 31(2), pages 125-145, June.
    25. Elisabeth Kempf & Margarita Tsoutsoura, 2021. "Partisan Professionals: Evidence from Credit Rating Analysts," Journal of Finance, American Finance Association, vol. 76(6), pages 2805-2856, December.
    26. Sumit Agarwal & Gene Amromin & Itzhak Ben‐David & Serdar Dinc, 2018. "The Politics of Foreclosures," Journal of Finance, American Finance Association, vol. 73(6), pages 2677-2717, December.
    27. Matthieu Chavaz & Andrew K Rose, 2019. "Political Borders and Bank Lending in Post-Crisis America," Review of Finance, European Finance Association, vol. 23(5), pages 935-959.
    28. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    29. Akey, Pat & Heimer, Rawley Z. & Lewellen, Stefan, 2021. "Politicizing consumer credit," Journal of Financial Economics, Elsevier, vol. 139(2), pages 627-655.
    30. Chodorow-Reich, Gabriel & Darmouni, Olivier & Luck, Stephan & Plosser, Matthew, 2022. "Bank liquidity provision across the firm size distribution," Journal of Financial Economics, Elsevier, vol. 144(3), pages 908-932.
    31. Fishback, Price V. & Kantor, Shawn & Wallis, John Joseph, 2003. "Can the New Deal's three Rs be rehabilitated? A program-by-program, county-by-county analysis," Explorations in Economic History, Elsevier, vol. 40(3), pages 278-307, July.
    32. Chernenko, Sergey & Scharfstein, David, 2024. "Racial disparities in the Paycheck Protection Program," Journal of Financial Economics, Elsevier, vol. 160(C).
    33. Granja, João & Makridis, Christos & Yannelis, Constantine & Zwick, Eric, 2022. "Did the paycheck protection program hit the target?," Journal of Financial Economics, Elsevier, vol. 145(3), pages 725-761.
    34. Olivier Coibion & Yuriy Gorodnichenko & Rupal Kamdar, 2018. "The Formation of Expectations, Inflation, and the Phillips Curve," Journal of Economic Literature, American Economic Association, vol. 56(4), pages 1447-1491, December.
    35. Dean Croushore & Tom Stark, 2019. "Fifty Years of the Survey of Professional Forecasters," Economic Insights, Federal Reserve Bank of Philadelphia, vol. 4(4), pages 1-11, October.
    36. Anna Cororaton & Samuel Rosen, 2021. "Public Firm Borrowers of the U.S. Paycheck Protection Program [The risk of being a fallen angel and the corporate dash for cash in the midst of COVID]," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 10(4), pages 641-693.
    37. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2017. "Combining density forecasts using focused scoring rules," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1298-1313, November.
    38. Garratt, Anthony & Henckel, Timo & Vahey, Shaun P., 2023. "Empirically-transformed linear opinion pools," International Journal of Forecasting, Elsevier, vol. 39(2), pages 736-753.
    39. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    40. Carlos Capistrán & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2‐3), pages 365-396, March.
    41. Christopher D. Carroll, 2003. "Macroeconomic Expectations of Households and Professional Forecasters," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(1), pages 269-298.
    42. Dean Croushore, 1993. "Introducing: the survey of professional forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Nov, pages 3-15.
    43. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Density characteristics and density forecast performance: a panel analysis," Empirical Economics, Springer, vol. 48(3), pages 1203-1231, May.
    44. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    45. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    46. Li, Lei & Strahan, Philip E., 2021. "Who Supplies PPP Loans (and Does It Matter)? Banks, Relationships, and the COVID Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 56(7), pages 2411-2438, November.
    47. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
    48. David Autor & David Cho & Leland D. Crane & Mita Goldar & Byron Lutz & Joshua Montes & William B. Peterman & David Ratner & Daniel Villar & Ahu Yildirmaz, 2022. "The $800 Billion Paycheck Protection Program: Where Did the Money Go and Why Did It Go There?," Journal of Economic Perspectives, American Economic Association, vol. 36(2), pages 55-80, Spring.
    49. Elisabeth Kempf & Margarita Tsoutsoura, 2024. "Political Polarization and Finance," NBER Working Papers 32792, National Bureau of Economic Research, Inc.
    50. Kenneth F. Wallis, 2005. "Combining Density and Interval Forecasts: A Modest Proposal," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 983-994, December.
    51. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
    52. Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
    53. Smets, Frank & Warne, Anders & Wouters, Rafael, 2014. "Professional forecasters and real-time forecasting with a DSGE model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 981-995.
    54. McAlinn, Kenichiro & West, Mike, 2019. "Dynamic Bayesian predictive synthesis in time series forecasting," Journal of Econometrics, Elsevier, vol. 210(1), pages 155-169.
    55. Dagostino, Ramona & Gao, Janet & Ma, Pengfei, 2023. "Partisanship in loan pricing," Journal of Financial Economics, Elsevier, vol. 150(3).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    2. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    5. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    6. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    7. Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022. "Optimal probabilistic forecasts: When do they work?," International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
    8. Bernaciak, Dawid & Griffin, Jim E., 2024. "A loss discounting framework for model averaging and selection in time series models," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1721-1733.
    9. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    10. Barbara Rossi, 2021. "Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them," Journal of Economic Literature, American Economic Association, vol. 59(4), pages 1135-1190, December.
    11. Chernis Tony, 2024. "Combining Large Numbers of Density Predictions with Bayesian Predictive Synthesis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 293-317, April.
    12. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    13. Peter McAdam & Anders Warne, 2024. "Density forecast combinations: The real‐time dimension," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1153-1172, August.
    14. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    15. Yanwei Jia & Jussi Keppo & Ville Satopää, 2023. "Herding in Probabilistic Forecasts," Management Science, INFORMS, vol. 69(5), pages 2713-2732, May.
    16. Malte Knüppel & Fabian Krüger, 2022. "Forecast uncertainty, disagreement, and the linear pool," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
    17. Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
    18. Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023. "On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates," Journal of Econometrics, Elsevier, vol. 237(2).
    19. Gustavo Joaquim & J. Christina Wang, 2022. "What Do 25 Million Records of Small Businesses Say about the Effects of the PPP?," Working Papers 22-23, Federal Reserve Bank of Boston.
    20. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Can Macroeconomists Forecast Risk? Event-Based Evidence from the Euro-Area SPF," International Journal of Central Banking, International Journal of Central Banking, vol. 11(4), pages 1-46, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G38 - Financial Economics - - Corporate Finance and Governance - - - Government Policy and Regulation
    • H12 - Public Economics - - Structure and Scope of Government - - - Crisis Management
    • H81 - Public Economics - - Miscellaneous Issues - - - Governmental Loans; Loan Guarantees; Credits; Grants; Bailouts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:16842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.