IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/453.html
   My bibliography  Save this paper

Inner Core, Asymmetric Nash Bargaining Solutions and Competitive Payoffs

Author

Listed:
  • Brangewitz, Sonja

    (Center for Mathematical Economics, Bielefeld University)

  • Gamp, Jan-Philip

    (Center for Mathematical Economics, Bielefeld University)

Abstract

We investigate the relationship between the inner core and asymmetric Nash bargaining solutions for n-person bargaining games with complete information. We show that the set of asymmetric Nash bargaining solutions for different strictly positive vectors of weights coincides with the inner core if all points in the underlying bargaining set are strictly positive. Furthermore, we prove that every bargaining game is a market game. By using the results of Qin (1993) we conclude that for every possible vector of weights of the asymmetric Nash bargaining solution there exists an economy that has this asymmetric Nash bargaining solution as its unique competitive payoff vector. We relate the literature of Trockel (1996, 2005) with the ideas of Qin (1993). Our result can be seen as a market foundation for every asymmetric Nash bargaining solution in analogy to the results on non-cooperative foundations of cooperative games.

Suggested Citation

  • Brangewitz, Sonja & Gamp, Jan-Philip, 2016. "Inner Core, Asymmetric Nash Bargaining Solutions and Competitive Payoffs," Center for Mathematical Economics Working Papers 453, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:453
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2900956/2900959
    File Function: First Version, 2011
    Download Restriction: no

    References listed on IDEAS

    as
    1. Sun, Ning & Trockel, Walter & Yang, Zaifu, 2008. "Competitive outcomes and endogenous coalition formation in an n-person game," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 853-860, July.
    2. Nash, John, 1953. "Two-Person Cooperative Games," Econometrica, Econometric Society, vol. 21(1), pages 128-140, April.
    3. Brangewitz, Sonja & Gamp, Jan-Philip, 2016. "Competitive outcomes and the inner core of NTU market games," Center for Mathematical Economics Working Papers 449, Center for Mathematical Economics, Bielefeld University.
    4. Walter Trockel, 2005. "Core-equivalence for the Nash bargaining solution," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 25(1), pages 255-263, January.
    5. Trockel, Walter, 1996. "A Walrasian approach to bargaining games," Economics Letters, Elsevier, vol. 51(3), pages 295-301, June.
    6. de Clippel, Geoffroy & Minelli, Enrico, 2005. "Two remarks on the inner core," Games and Economic Behavior, Elsevier, vol. 50(2), pages 143-154, February.
    7. Olivier Compte & Philippe Jehiel, 2010. "The Coalitional Nash Bargaining Solution," Econometrica, Econometric Society, vol. 78(5), pages 1593-1623, September.
    8. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    9. Shapley, Lloyd S. & Shubik, Martin, 1969. "On market games," Journal of Economic Theory, Elsevier, vol. 1(1), pages 9-25, June.
    10. Bergin, James & Duggan, John, 1999. "An Implementation-Theoretic Approach to Non-cooperative Foundations," Journal of Economic Theory, Elsevier, vol. 86(1), pages 50-76, May.
    11. Qin Cheng-Zhong, 1994. "The Inner Core of an n-Person Game," Games and Economic Behavior, Elsevier, vol. 6(3), pages 431-444, May.
    12. Brangewitz, Sonja & Gamp, Jan-Philip, 2014. "Competitive outcomes and the core of TU market games," Center for Mathematical Economics Working Papers 454, Center for Mathematical Economics, Bielefeld University.
    13. Walter Trockel, 2000. "Implementations of the Nash solution based on its Walrasian characterization," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 16(2), pages 277-294.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Inner Core; Asymmetric Nash Bargaining Solution; Competitive Payoffs; Market Games;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:453. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bettina Weingarten). General contact details of provider: http://edirc.repec.org/data/imbiede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.