IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/430.html
   My bibliography  Save this paper

Representation of TU games by coalition production economies

Author

Listed:
  • Inoue, Tomoki

    (Center for Mathematical Economics, Bielefeld University)

Abstract

We prove that every transferable utility (TU) game can be generated by a coalition production economy. Given a TU game, the set of Walrasian payoff vectors of the induced coalition production economy coincides with the core of the balanced cover of the given game. Therefore, a Walrasian equilibrium for the induced coalition production economy always exists. The induced coalition production economy has one output and the same number of inputs as agents. Every input is personalized and it can be interpreted as agent's labor. In a Walrasian equilibrium, every agent is permitted to work at several firms. In a Walrasian equilibrium without double-jobbing, in contrast, every agent has to work at exactly one firm. This restricted concept of a Walrasian equilibrium enables us to discuss which coalitions are formed in an equilibrium. If the cohesive cover or the completion of a given TU game is balanced, then the no-double-jobbing restriction does not matter, i.e., there exists no difference between Walrasian payoff vectors and Walrasian payoff vectors without double-jobbing.

Suggested Citation

  • Inoue, Tomoki, 2011. "Representation of TU games by coalition production economies," Center for Mathematical Economics Working Papers 430, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:430
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2316457/2319873
    File Function: First Version, 2010
    Download Restriction: no

    References listed on IDEAS

    as
    1. Sun, Ning & Trockel, Walter & Yang, Zaifu, 2008. "Competitive outcomes and endogenous coalition formation in an n-person game," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 853-860, July.
    2. Guesnerie, R. & Oddou, C., 1979. "On economic games which are not necessarily superadditive : Solution concepts and application to a local public good problem with few a agents," Economics Letters, Elsevier, vol. 3(4), pages 301-306.
    3. Qin, Cheng-Zhong, 1993. "A Conjecture of Shapley and Shubik on Competitive Outcomes in the Cores of NTU Market Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(4), pages 335-344.
    4. Shapley, Lloyd S. & Shubik, Martin, 1969. "On market games," Journal of Economic Theory, Elsevier, vol. 1(1), pages 9-25, June.
    5. Billera, Louis J., 1974. "On games without side payments arising from a general class of markets," Journal of Mathematical Economics, Elsevier, vol. 1(2), pages 129-139, August.
    6. Qin Cheng-Zhong, 1994. "The Inner Core of an n-Person Game," Games and Economic Behavior, Elsevier, vol. 6(3), pages 431-444, May.
    7. Volker Boehm, 1974. "The Core of an Economy with Production," Review of Economic Studies, Oxford University Press, vol. 41(3), pages 429-436.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inoue, Tomoki, 2013. "Representation of non-transferable utility games by coalition production economies," Journal of Mathematical Economics, Elsevier, vol. 49(2), pages 141-149.
    2. Bejan, Camelia & Gómez, Juan Camilo, 2012. "A market interpretation of the proportional extended core," Economics Letters, Elsevier, vol. 117(3), pages 636-638.
    3. Brangewitz, Sonja & Gamp, Jan-Philip, 2014. "Competitive outcomes and the core of TU market games," Center for Mathematical Economics Working Papers 454, Center for Mathematical Economics, Bielefeld University.
    4. Inoue, Tomoki, 2012. "Representation of transferable utility games by coalition production economies," Journal of Mathematical Economics, Elsevier, vol. 48(3), pages 143-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:430. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bettina Weingarten). General contact details of provider: http://edirc.repec.org/data/imbiede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.