IDEAS home Printed from
   My bibliography  Save this paper

Forecasting world output: the rising importance of emerging economies


  • Alessandro Borin

    () (Bank of Italy)

  • Riccardo Cristadoro

    () (Bank of Italy)

  • Roberto Golinelli

    () (University of Bologna)

  • Giuseppe Parigi

    () (Bank of Italy)


Assessing the global economic outlook is a fundamentally important task of international financial institutions, governments and central banks. In this paper we focus on the consequences of the rapid growth of emerging markets for monitoring and forecasting the global outlook. Our main results are that (i) the rise of the emerging countries has sharply altered the correlation of growth rates among the main economic areas; (ii) this is clearly detectable in forecasting equations as a structural break occurring in the 1990s; (iii) hence, inferences on global developments based solely on the industrialized countries are highly unreliable; (iv) the otherwise cumbersome task of monitoring many � and less studied � countries can be tackled by resorting to very simple bridge models (BM); (v) BM performance is in line with that of the most widely quoted predictions (WEO, Consensus) both before and during the recent crisis; (vi) for some emerging economies, BMs would have provided even better forecasts during the recent crisis.

Suggested Citation

  • Alessandro Borin & Riccardo Cristadoro & Roberto Golinelli & Giuseppe Parigi, 2012. "Forecasting world output: the rising importance of emerging economies," Temi di discussione (Economic working papers) 853, Bank of Italy, Economic Research and International Relations Area.
  • Handle: RePEc:bdi:wptemi:td_853_12

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    2. G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2009. "Short-term forecasting of GDP using large datasets: a pseudo real-time forecast evaluation exercise," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 595-611.
    3. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    4. Lionel Fontagné & Guillaume Gaulier & Soledad Zignago, 2008. "Specialization across varieties and North-South competition," Economic Policy, CEPR;CES;MSH, vol. 23, pages 51-91, January.
    5. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    6. Golinelli, Roberto & Parigi, Giuseppe, 2008. "Real-time squared: A real-time data set for real-time GDP forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 368-385.
    7. Marcelle Chauvet & Chengxuan Yu, 2006. "International business cycles: G7 and OECD countries," Economic Review, Federal Reserve Bank of Atlanta, issue Q 1, pages 43-54.
    8. S. Borağan Aruoba & Francis X. Diebold & M. Ayhan Kose & Marco E. Terrones, 2011. "Globalization, the Business Cycle, and Macroeconomic Monitoring," NBER International Seminar on Macroeconomics, University of Chicago Press, vol. 7(1), pages 245-286.
    9. Gulasekaran Rajaguru & Tilak Abeysinghe, 2004. "Quarterly real GDP estimates for China and ASEAN4 with a forecast evaluation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 431-447.
    10. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
    11. V. A. Bessonov, 2002. "Transformational Recession and Structural Changes in Russian Industrial Production," Problems of Economic Transition, Taylor & Francis Journals, vol. 45(4), pages 6-93.
    12. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bhattacharya, Rudrani & Pandey, Radhika & Veronese, Giovanni, 2011. "Tracking India Growth in Real Time," Working Papers 11/90, National Institute of Public Finance and Policy.
    2. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
    3. Fabio Bacchini & Cristina Brandimarte & Piero Crivelli & Roberta De Santis & Marco Fioramanti & Alessandro Girardi & Roberto Golinelli & Cecilia Jona-Lasinio & Massimo Mancini & Carmine Pappalardo & D, 2013. "Building the core of the Istat system of models for forecasting the Italian economy: MeMo-It," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 15(1), pages 17-45.

    More about this item


    GDP forecast; emerging and Asian markets; bridge models; forecasting ability;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_853_12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.