IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1703.02105.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Network Structure and Naive Sequential Learning

Author

Listed:
  • Krishna Dasaratha
  • Kevin He

Abstract

We study a sequential-learning model featuring a network of naive agents with Gaussian information structures. Agents apply a heuristic rule to aggregate predecessors' actions. They weigh these actions according the strengths of their social connections to different predecessors. We show this rule arises endogenously when agents wrongly believe others act solely on private information and thus neglect redundancies among observations. We provide a simple linear formula expressing agents' actions in terms of network paths and use this formula to characterize the set of networks where naive agents eventually learn correctly. This characterization implies that, on all networks where later agents observe more than one neighbor, there exist disproportionately influential early agents who can cause herding on incorrect actions. Going beyond existing social-learning results, we compute the probability of such mislearning exactly. This allows us to compare likelihoods of incorrect herding, and hence expected welfare losses, across network structures. The probability of mislearning increases when link densities are higher and when networks are more integrated. In partially segregated networks, divergent early signals can lead to persistent disagreement between groups.

Suggested Citation

  • Krishna Dasaratha & Kevin He, 2017. "Network Structure and Naive Sequential Learning," Papers 1703.02105, arXiv.org, revised May 2020.
  • Handle: RePEc:arx:papers:1703.02105
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1703.02105
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lones Smith & Peter Sorensen, 2000. "Pathological Outcomes of Observational Learning," Econometrica, Econometric Society, vol. 68(2), pages 371-398, March.
    2. Benjamin Enke & Florian Zimmermann, 2019. "Correlation Neglect in Belief Formation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(1), pages 313-332.
    3. Glenn Ellison & Drew Fudenberg, 1995. "Word-of-Mouth Communication and Social Learning," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 93-125.
    4. Venkatesh Bala & Sanjeev Goyal, 1998. "Learning from Neighbours," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 595-621.
    5. Levy, Gilat & Razin, Ronny, 2018. "Information diffusion in networks with the Bayesian Peer Influence heuristic," Games and Economic Behavior, Elsevier, vol. 109(C), pages 262-270.
    6. Daron Acemoğlu & Giacomo Como & Fabio Fagnani & Asuman Ozdaglar, 2013. "Opinion Fluctuations and Disagreement in Social Networks," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 1-27, February.
    7. Georg Weizsacker, 2010. "Do We Follow Others When We Should? A Simple Test of Rational Expectations," American Economic Review, American Economic Association, vol. 100(5), pages 2340-2360, December.
    8. Bohren, J. Aislinn, 2016. "Informational herding with model misspecification," Journal of Economic Theory, Elsevier, vol. 163(C), pages 222-247.
    9. Rabin, Matthew & Eyster, Erik & Weizsäcker, Georg, 2015. "An Experiment on Social Mislearning," CEPR Discussion Papers 11020, C.E.P.R. Discussion Papers.
    10. Szeidl, Adam & Mobius, Markus & Phan, Tuan, 2015. "Treasure Hunt: Social Learning in the Field," CEPR Discussion Papers 10493, C.E.P.R. Discussion Papers.
    11. Mueller-Frank, Manuel & Arieliy, Itai, 2015. "A General Model of Boundedly Rational Observational Learning: Theory and Experiment," IESE Research Papers D/1120, IESE Business School.
    12. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 909-968.
    13. Arun G. Chandrasekhar & Horacio Larreguy & Juan Pablo Xandri, 2015. "Testing Models of Social Learning on Networks: Evidence from a Lab Experiment in the Field," NBER Working Papers 21468, National Bureau of Economic Research, Inc.
    14. , & ,, 2015. "Information diffusion in networks through social learning," Theoretical Economics, Econometric Society, vol. 10(3), September.
    15. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    16. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    17. Pooya Molavi & Alireza Tahbaz‐Salehi & Ali Jadbabaie, 2018. "A Theory of Non‐Bayesian Social Learning," Econometrica, Econometric Society, vol. 86(2), pages 445-490, March.
    18. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    19. Benjamin Golub & Matthew O. Jackson, 2012. "How Homophily Affects the Speed of Learning and Best-Response Dynamics," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(3), pages 1287-1338.
    20. Elchanan Mossel & Allan Sly & Omer Tamuz, 2015. "Strategic Learning and the Topology of Social Networks," Econometrica, Econometric Society, vol. 83(5), pages 1755-1794, September.
    21. Dasaratha, Krishna & He, Kevin, 2021. "An experiment on network density and sequential learning," Games and Economic Behavior, Elsevier, vol. 128(C), pages 182-192.
    22. Bohren, Aislinn & Hauser, Daniel, 2017. "Learning with Heterogeneous Misspecified Models: Characterization and Robustness," CEPR Discussion Papers 12036, C.E.P.R. Discussion Papers.
    23. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    24. Erik Eyster & Matthew Rabin, 2014. "Extensive Imitation is Irrational and Harmful," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(4), pages 1861-1898.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mira Frick & Ryota Iijima & Yuhta Ishii, 2020. "Belief Convergence under Misspecified Learning: A Martingale Approach," Cowles Foundation Discussion Papers 2235R, Cowles Foundation for Research in Economics, Yale University, revised Mar 2021.
    2. Enrique Urbano Arellano & Xinyang Wang, 2023. "Social Learning of General Rules," Papers 2310.15861, arXiv.org.
    3. Mira Frick & Ryota Iijima & Yuhta Ishii, 2020. "Misinterpreting Others and the Fragility of Social Learning," Econometrica, Econometric Society, vol. 88(6), pages 2281-2328, November.
    4. Li, Wei & Tan, Xu, 2020. "Locally Bayesian learning in networks," Theoretical Economics, Econometric Society, vol. 15(1), January.
    5. Elchanan Mossel & Manuel Mueller‐Frank & Allan Sly & Omer Tamuz, 2020. "Social Learning Equilibria," Econometrica, Econometric Society, vol. 88(3), pages 1235-1267, May.
    6. Mueller-Frank, Manuel, 2024. "As strong as the weakest node: The impact of misinformation in social networks," Journal of Economic Theory, Elsevier, vol. 215(C).
    7. Mira Frick & Ryota Iijima & Yuhta Ishii, 2020. "Belief Convergence under Misspecified Learning: A Martingale Approach," Cowles Foundation Discussion Papers 2235R3, Cowles Foundation for Research in Economics, Yale University, revised Apr 2022.
    8. Sadler, Evan, 2020. "Innovation adoption and collective experimentation," Games and Economic Behavior, Elsevier, vol. 120(C), pages 121-131.
    9. Dasaratha, Krishna & He, Kevin, 2021. "An experiment on network density and sequential learning," Games and Economic Behavior, Elsevier, vol. 128(C), pages 182-192.
    10. Kevin He & Jonathan Libgober, 2020. "Evolutionarily Stable (Mis)specifications: Theory and Applications," Papers 2012.15007, arXiv.org, revised Feb 2023.
    11. Mira Frick & Ryota Iijima & Yuhta Ishii, 2020. "Stability and Robustness in Misspecified Learning Models," Cowles Foundation Discussion Papers 2235, Cowles Foundation for Research in Economics, Yale University.
    12. Simon Board & Moritz Meyer‐ter‐Vehn, 2021. "Learning Dynamics in Social Networks," Econometrica, Econometric Society, vol. 89(6), pages 2601-2635, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei & Tan, Xu, 2021. "Cognitively-constrained learning from neighbors," Games and Economic Behavior, Elsevier, vol. 129(C), pages 32-54.
    2. , & ,, 2015. "Information diffusion in networks through social learning," Theoretical Economics, Econometric Society, vol. 10(3), September.
    3. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    4. Ding, Huihui & Pivato, Marcus, 2021. "Deliberation and epistemic democracy," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 138-167.
    5. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    6. Larson, Nathan, 2015. "Inertia in social learning from a summary statistic," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 596-626.
    7. Mueller-Frank, Manuel, 2024. "As strong as the weakest node: The impact of misinformation in social networks," Journal of Economic Theory, Elsevier, vol. 215(C).
    8. Bogaçhan Çelen & Sen Geng & Huihui Li, 2018. "Belief Error and Non-Bayesian Social Learning: An Experimental Evidence," GRU Working Paper Series GRU_2018_022, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    9. Jan Hązła & Ali Jadbabaie & Elchanan Mossel & M. Amin Rahimian, 2021. "Bayesian Decision Making in Groups is Hard," Operations Research, INFORMS, vol. 69(2), pages 632-654, March.
    10. Azzimonti, Marina & Fernandes, Marcos, 2023. "Social media networks, fake news, and polarization," European Journal of Political Economy, Elsevier, vol. 76(C).
    11. Jakob Grazzini & Domenico Massaro, 2016. "Dispersed Information and the Origins of Aggregate Fluctuations," CESifo Working Paper Series 5957, CESifo.
    12. Bohren, Aislinn & Hauser, Daniel, 2017. "Learning with Heterogeneous Misspecified Models: Characterization and Robustness," CEPR Discussion Papers 12036, C.E.P.R. Discussion Papers.
    13. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    14. Ilan Lobel & Evan Sadler, 2016. "Preferences, Homophily, and Social Learning," Operations Research, INFORMS, vol. 64(3), pages 564-584, June.
    15. Azomahou, T. & Opolot, D., 2014. "Beliefs dynamics in communication networks," MERIT Working Papers 2014-034, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    16. Mira Frick & Ryota Iijima & Yuhta Ishii, 2020. "Misinterpreting Others and the Fragility of Social Learning," Econometrica, Econometric Society, vol. 88(6), pages 2281-2328, November.
    17. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    18. Dasaratha, Krishna & He, Kevin, 2021. "An experiment on network density and sequential learning," Games and Economic Behavior, Elsevier, vol. 128(C), pages 182-192.
    19. Arieli, Itai & Babichenko, Yakov & Shlomov, Segev, 2021. "Virtually additive learning," Journal of Economic Theory, Elsevier, vol. 197(C).
    20. Sebastiano Della Lena, 2019. "Non-Bayesian Social Learning and the Spread of Misinformation in Networks," Working Papers 2019:09, Department of Economics, University of Venice "Ca' Foscari".

    More about this item

    JEL classification:

    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1703.02105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.