IDEAS home Printed from https://ideas.repec.org/p/pen/papers/21-005.html
   My bibliography  Save this paper

Learning with Heterogeneous Misspecfied Models: Characterization and Robustness

Author

Listed:
  • J. Aislinn Bohren

    (University of Pennsylvania)

  • Daniel N. Hauser

    (Aalto University and Helsinki GSE)

Abstract

This paper develops a general framework to study how misinterpreting information impacts learning. Our main result is a simple criterion to characterize long-run beliefs based on the underlying form of misspeci?cation. We present this characterization in the context of social learning, then highlight how it applies to other learning environ-ments, including individual learning. A key contribution is that our characterization applies to settings with model heterogeneity and provides conditions for entrenched disagreement. Our characterization can be used to determine whether a representative agent approach is valid in the face of heterogeneity, study how di?ering levels of bias or unawareness of others’ biases impact learning, and explore whether the impact of a bias is sensitive to parametric speci?cation or the source of information. This uni?ed framework synthesizes insights gleaned from previously studied forms of misspeci?ca-tion and provides novel insights in speci?c applications, as we demonstrate in settings with partisan bias, overreaction, naive learning, and level-k reasoning.

Suggested Citation

  • J. Aislinn Bohren & Daniel N. Hauser, 2021. "Learning with Heterogeneous Misspecfied Models: Characterization and Robustness," PIER Working Paper Archive 21-005, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  • Handle: RePEc:pen:papers:21-005
    as

    Download full text from publisher

    File URL: https://economics.sas.upenn.edu/sites/default/files/filevault/21-005.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joshua Schwartzstein, 2014. "Selective Attention And Learning," Journal of the European Economic Association, European Economic Association, vol. 12(6), pages 1423-1452, December.
    2. Markus K. Brunnermeier & Jonathan A. Parker, 2005. "Optimal Expectations," American Economic Review, American Economic Association, vol. 95(4), pages 1092-1118, September.
    3. Botond Kőszegi & Matthew Rabin, 2006. "A Model of Reference-Dependent Preferences," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(4), pages 1133-1165.
    4. Jehiel, Philippe, 2005. "Analogy-based expectation equilibrium," Journal of Economic Theory, Elsevier, vol. 123(2), pages 81-104, August.
    5. Grebe, Tim & Schmid, Julia & Stiehler, Andreas, 2008. "Do individuals recognize cascade behavior of others? - An experimental study," Journal of Economic Psychology, Elsevier, vol. 29(2), pages 197-209, April.
    6. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    7. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    8. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    9. Lones Smith & Peter Sorensen, 2000. "Pathological Outcomes of Observational Learning," Econometrica, Econometric Society, vol. 68(2), pages 371-398, March.
    10. Ignacio Esponda & Demian Pouzo, 2014. "Berk-Nash Equilibrium: A Framework for Modeling Agents with Misspecified Models," Papers 1411.1152, arXiv.org, revised Nov 2019.
    11. Epstein Larry G & Noor Jawwad & Sandroni Alvaro, 2010. "Non-Bayesian Learning," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 10(1), pages 1-20, January.
    12. Antonio Guarino & Philippe Jehiel, 2013. "Social Learning with Coarse Inference," American Economic Journal: Microeconomics, American Economic Association, vol. 5(1), pages 147-174, February.
    13. Bohren, J. Aislinn, 2016. "Informational herding with model misspecification," Journal of Economic Theory, Elsevier, vol. 163(C), pages 222-247.
    14. Benjamin Enke & Florian Zimmermann, 2019. "Correlation Neglect in Belief Formation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(1), pages 313-332.
    15. repec:hal:pseose:hal-00813047 is not listed on IDEAS
    16. Brad M. Barber & Terrance Odean, 2001. "Boys will be Boys: Gender, Overconfidence, and Common Stock Investment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(1), pages 261-292.
    17. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    18. Andrea Wilson, 2014. "Bounded Memory and Biases in Information Processing," Econometrica, Econometric Society, vol. 82, pages 2257-2294, November.
    19. Terrance Odean, 1999. "Do Investors Trade Too Much?," American Economic Review, American Economic Association, vol. 89(5), pages 1279-1298, December.
    20. Matthew Rabin & Joel L. Schrag, 1999. "First Impressions Matter: A Model of Confirmatory Bias," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 37-82.
    21. Ido Kallir & Doron Sonsino, 2009. "The Neglect of Correlation in Allocation Decisions," Southern Economic Journal, John Wiley & Sons, vol. 75(4), pages 1045-1066, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aislinn Bohren & Daniel Hauser, 2017. "Bounded Rationality And Learning: A Framwork and A Robustness Result," PIER Working Paper Archive 17-007, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 May 2017.
    2. Aislinn Bohren & Daniel Hauser, 2018. "Social Learning with Model Misspeciification: A Framework and a Robustness Result," PIER Working Paper Archive 18-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Jul 2018.
    3. Bohren, J. Aislinn, 2016. "Informational herding with model misspecification," Journal of Economic Theory, Elsevier, vol. 163(C), pages 222-247.
    4. Philippe Jehiel, 2022. "Analogy-Based Expectation Equilibrium and Related Concepts:Theory, Applications, and Beyond," Working Papers halshs-03735680, HAL.
    5. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.
    6. Aislinn Bohren, 2014. "Informational Herding with Model Misspecification, Second Version," PIER Working Paper Archive 15-022, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Nov 2014.
    7. Mira Frick & Ryota Iijima & Yuhta Ishii, 2020. "Misinterpreting Others and the Fragility of Social Learning," Econometrica, Econometric Society, vol. 88(6), pages 2281-2328, November.
    8. Bogaçhan Çelen & Sen Geng & Huihui Li, 2018. "Belief Error and Non-Bayesian Social Learning: An Experimental Evidence," GRU Working Paper Series GRU_2018_022, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    9. J. Aislinn Bohren & Daniel N. Hauser, 2021. "Learning With Heterogeneous Misspecified Models: Characterization and Robustness," Econometrica, Econometric Society, vol. 89(6), pages 3025-3077, November.
    10. Germano, Fabrizio & Sobbrio, Francesco, 2020. "Opinion dynamics via search engines (and other algorithmic gatekeepers)," Journal of Public Economics, Elsevier, vol. 187(C).
    11. Penczynski, Stefan P., 2017. "The nature of social learning: Experimental evidence," European Economic Review, Elsevier, vol. 94(C), pages 148-165.
    12. Mira Frick & Ryota Iijima & Yuhta Ishii, 2020. "Belief Convergence under Misspecified Learning: A Martingale Approach," Cowles Foundation Discussion Papers 2235R, Cowles Foundation for Research in Economics, Yale University, revised Mar 2021.
    13. Mira Frick & Ryota Iijima & Yuhta Ishii, 2020. "Belief Convergence under Misspecified Learning: A Martingale Approach," Cowles Foundation Discussion Papers 2235R3, Cowles Foundation for Research in Economics, Yale University, revised Apr 2022.
    14. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    15. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    16. Marco Angrisani & Antonio Guarino & Philippe Jehiel & Toru Kitagawa, 2021. "Information Redundancy Neglect versus Overconfidence: A Social Learning Experiment," American Economic Journal: Microeconomics, American Economic Association, vol. 13(3), pages 163-197, August.
    17. Azzimonti, Marina & Fernandes, Marcos, 2023. "Social media networks, fake news, and polarization," European Journal of Political Economy, Elsevier, vol. 76(C).
    18. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    19. Ilai Bistritz & Nasimeh Heydaribeni & Achilleas Anastasopoulos, 2019. "Do Informational Cascades Happen with Non-myopic Agents?," Papers 1905.01327, arXiv.org, revised Jul 2022.
    20. Pooya Molavi & Ceyhun Eksin & Alejandro Ribeiro & Ali Jadbabaie, 2016. "Learning to Coordinate in Social Networks," Operations Research, INFORMS, vol. 64(3), pages 605-621, June.

    More about this item

    Keywords

    Model misspecication; Social learning;

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:21-005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.