IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v163y2016icp222-247.html
   My bibliography  Save this article

Informational herding with model misspecification

Author

Listed:
  • Bohren, J. Aislinn

Abstract

This paper demonstrates that a misspecified model of information processing interferes with long-run learning and allows inefficient choices to persist, despite sufficient information for asymptotic learning. I consider an observational learning environment in which agents observe a private signal about an unknown state and some agents observe the actions of their predecessors. Individuals face an inferential challenge when extracting information from the actions of others, as prior actions aggregate multiple sources of correlated information. A misspecified model allows for the fact that an agent may not be able to distinguish between new and redundant information, and may have an incorrect model of how others process this information. When individuals significantly overestimate the amount of new information, beliefs about the state become entrenched and incorrect learning occurs with positive probability. When individuals sufficiently overestimate the amount of redundant information, beliefs fail to converge and learning is incomplete. Learning is complete when agents have an approximately correct model of inference, establishing that the correctly specified model is robust to perturbation.

Suggested Citation

  • Bohren, J. Aislinn, 2016. "Informational herding with model misspecification," Journal of Economic Theory, Elsevier, vol. 163(C), pages 222-247.
  • Handle: RePEc:eee:jetheo:v:163:y:2016:i:c:p:222-247
    DOI: 10.1016/j.jet.2016.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022053116000211
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joshua Schwartzstein, 2014. "Selective Attention And Learning," Journal of the European Economic Association, European Economic Association, vol. 12(6), pages 1423-1452, December.
    2. Lones Smith & Peter Sorensen, 2000. "Pathological Outcomes of Observational Learning," Econometrica, Econometric Society, vol. 68(2), pages 371-398, March.
    3. Jehiel, Philippe, 2005. "Analogy-based expectation equilibrium," Journal of Economic Theory, Elsevier, vol. 123(2), pages 81-104, August.
    4. Yildiz, Muhamet & Acemoglu, Daron & Chernozhukov, Victor, 2016. "Fragility of asymptotic agreement under Bayesian learning," Theoretical Economics, Econometric Society, vol. 11(1), January.
    5. Antonio Guarino & Philippe Jehiel, 2013. "Social Learning with Coarse Inference," American Economic Journal: Microeconomics, American Economic Association, vol. 5(1), pages 147-174, February.
    6. Marco Ottaviani & Giuseppe Moscarini & Lones Smith, 1998. "Social learning in a changing world," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 11(3), pages 657-665.
    7. Jacob K. Goeree & Thomas R. Palfrey & Brian W. Rogers & Richard D. McKelvey, 2007. "Self-Correcting Information Cascades," Review of Economic Studies, Oxford University Press, vol. 74(3), pages 733-762.
    8. Andrea Wilson, 2014. "Bounded Memory and Biases in Information Processing," Econometrica, Econometric Society, vol. 82, pages 2257-2294, November.
    9. Anthony Ziegelmeyer & Frédéric Koessler & Juergen Bracht & Eyal Winter, 2010. "Fragility of information cascades: an experimental study using elicited beliefs," Experimental Economics, Springer;Economic Science Association, vol. 13(2), pages 121-145, June.
    10. Erik Eyster & Matthew Rabin, 2005. "Cursed Equilibrium," Econometrica, Econometric Society, vol. 73(5), pages 1623-1672, September.
    11. Mueller-Frank, Manuel & Arieliy, Itai, 2015. "A General Model of Boundedly Rational Observational Learning: Theory and Experiment," IESE Research Papers D/1120, IESE Business School.
    12. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, Oxford University Press, vol. 118(3), pages 909-968.
    13. Colin F. Camerer & Teck-Hua Ho & Juin-Kuan Chong, 2004. "A Cognitive Hierarchy Model of Games," The Quarterly Journal of Economics, Oxford University Press, vol. 119(3), pages 861-898.
    14. Ali Jadbabaie & Alvaro Sandroni & Alireza Tahbaz-Salehi, 2010. "Non-Bayesian Social Learning, Second Version," PIER Working Paper Archive 10-005, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Feb 2010.
    15. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," Review of Economic Studies, Oxford University Press, vol. 78(4), pages 1201-1236.
    16. Epstein Larry G & Noor Jawwad & Sandroni Alvaro, 2010. "Non-Bayesian Learning," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 10(1), pages 1-20, January.
    17. Erik Eyster & Matthew Rabin, 2010. "Naïve Herding in Rich-Information Settings," American Economic Journal: Microeconomics, American Economic Association, vol. 2(4), pages 221-243, November.
    18. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    19. Dorothea Kübler & Georg Weizsäcker, 2004. "Limited Depth of Reasoning and Failure of Cascade Formation in the Laboratory," Review of Economic Studies, Oxford University Press, vol. 71(2), pages 425-441.
    20. Matthew Rabin & Joel L. Schrag, 1999. "First Impressions Matter: A Model of Confirmatory Bias," The Quarterly Journal of Economics, Oxford University Press, vol. 114(1), pages 37-82.
    21. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, Oxford University Press, vol. 107(3), pages 797-817.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:eecrev:v:94:y:2017:i:c:p:148-165 is not listed on IDEAS
    2. Fabrizio Germano & Francesco Sobbrio, 2016. "Opinion dynamics via search engines (and other algorithmic gatekeepers)," Economics Working Papers 1552, Department of Economics and Business, Universitat Pompeu Fabra, revised Mar 2018.
    3. Christoph March & Anthony Ziegelmeyer, 2018. "Excessive Herding in the Laboratory: The Role of Intuitive Judgments," CESifo Working Paper Series 6855, CESifo Group Munich.
    4. Krishna Dasaratha & Kevin He, 2017. "Network Structure and Naive Sequential Learning," Papers 1703.02105, arXiv.org, revised Dec 2017.
    5. Marco Angrisani & Antonio Guarino & Philippe Jehiel & Toru Kitagawa, 2017. "Information redundancy neglect versus overconfidence: a social learning experiment," CeMMAP working papers CWP32/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Schwarz, Marco A., 2017. "The Impact of Social Media On Belief Formation," Rationality and Competition Discussion Paper Series 57, CRC TRR 190 Rationality and Competition.
    7. Bohren, Aislinn & Hauser, Daniel, 2017. "Bounded Rationality And Learning: A Framework and A Robustness Result," CEPR Discussion Papers 12036, C.E.P.R. Discussion Papers.

    More about this item

    Keywords

    Model misspecification; Observational learning; Informational herding;

    JEL classification:

    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:163:y:2016:i:c:p:222-247. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.