IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Non-Bayesian social learning

  • Jadbabaie, Ali
  • Molavi, Pooya
  • Sandroni, Alvaro
  • Tahbaz-Salehi, Alireza

We develop a dynamic model of opinion formation in social networks when the information required for learning a parameter may not be at the disposal of any single agent. Individuals engage in communication with their neighbors in order to learn from their experiences. However, instead of incorporating the views of their neighbors in a fully Bayesian manner, agents use a simple updating rule which linearly combines their personal experience and the views of their neighbors. We show that, as long as individuals take their personal signals into account in a Bayesian way, repeated interactions lead them to successfully aggregate information and learn the true parameter. This result holds in spite of the apparent naïveté of agentsʼ updating rule, the agentsʼ need for information from sources the existence of which they may not be aware of, worst prior views, and the assumption that no agent can tell whether her own views or those of her neighbors are more accurate.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Games and Economic Behavior.

Volume (Year): 76 (2012)
Issue (Month): 1 ()
Pages: 210-225

in new window

Handle: RePEc:eee:gamebe:v:76:y:2012:i:1:p:210-225
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bala, Venkatesh & Goyal, Sanjeev, 1998. "Learning from Neighbours," Review of Economic Studies, Wiley Blackwell, vol. 65(3), pages 595-621, July.
  2. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion bias, social influence, and uni-dimensional opinions," LSE Research Online Documents on Economics 454, London School of Economics and Political Science, LSE Library.
  3. Ali Jadbabaie & Alvaro Sandroni & Alireza Tahbaz-Salehi, 2010. "Non-Bayesian Social Learning, Second Version," PIER Working Paper Archive 10-005, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Feb 2010.
  4. Kalai, Ehud & Lehrer, Ehud, 1994. "Weak and strong merging of opinions," Journal of Mathematical Economics, Elsevier, vol. 23(1), pages 73-86, January.
  5. Ellison, Glenn & Fudenberg, Drew, 1992. "Rules of Thumb for Social Learning," IDEI Working Papers 17, Institut d'Économie Industrielle (IDEI), Toulouse.
  6. Larry G. Epstein & Alvaro Sandroni, 2003. "Non-Bayesian Updating : A Theoretical Framework," RCER Working Papers 505, University of Rochester - Center for Economic Research (RCER).
  7. Banerjee, Abhijit V, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, MIT Press, vol. 107(3), pages 797-817, August.
  8. Ellison, Glenn & Fudenberg, Drew, 1995. "Word-of-Mouth Communication and Social Learning," The Quarterly Journal of Economics, MIT Press, vol. 110(1), pages 93-125, February.
  9. Abhijit Banerjee & Drew Fudenberg, 2010. "Word of Mouth Learning," Levine's Working Paper Archive 723, David K. Levine.
  10. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2008. "Bayesian Learning in Social Networks," NBER Working Papers 14040, National Bureau of Economic Research, Inc.
  11. Lones Smith & Peter Sorensen, 2000. "Pathological Outcomes of Observational Learning," Econometrica, Econometric Society, vol. 68(2), pages 371-398, March.
  12. Nicolas Vieille & Eilon Solan & Dinah Rosenberg, 2009. "Informational externalities and emergence of consensus," Post-Print hal-00464565, HAL.
  13. Sushil Bikhchandani & David Hirshleifer & Ivo Welch, 2010. "A theory of Fads, Fashion, Custom and cultural change as informational Cascades," Levine's Working Paper Archive 1193, David K. Levine.
  14. Gale, Douglas & Kariv, Shachar, 2003. "Bayesian learning in social networks," Games and Economic Behavior, Elsevier, vol. 45(2), pages 329-346, November.
  15. Acemoglu, Daron & Ozdaglar, Asuman & ParandehGheibi, Ali, 2010. "Spread of (mis)information in social networks," Games and Economic Behavior, Elsevier, vol. 70(2), pages 194-227, November.
  16. Rosenberg, Dinah & Solan, Eilon & Vieille, Nicolas, 2009. "Informational externalities and emergence of consensus," Games and Economic Behavior, Elsevier, vol. 66(2), pages 979-994, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:76:y:2012:i:1:p:210-225. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.