IDEAS home Printed from https://ideas.repec.org/p/hal/pseptp/hal-00813047.html

Social Learning with Coarse Inference

Author

Listed:
  • Antonio Guarino

    (UCL - University College London [UCL])

  • Philippe Jehiel

    (UCL - University College London [UCL], PSE - Paris-Jourdan Sciences Economiques - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

We study social learning by boundedly rational agents. Agents take a decision in sequence, after observing their predecessors and a private signal. They are unable to make perfect inferences from their predecessors' decisions: they only understand the relation between the aggregate distribution of actions and the state of nature, and make their inferences accordingly. We show that, in a discrete action space, even if agents receive signals of unbounded precision, there are asymptotic inefficiencies. In a continuous action space, compared to the rational case, agents overweight early signals. Despite this behavioral bias, eventually agents learn the realized state of the world and choose the correct action.

Suggested Citation

  • Antonio Guarino & Philippe Jehiel, 2013. "Social Learning with Coarse Inference," PSE-Ecole d'économie de Paris (Postprint) hal-00813047, HAL.
  • Handle: RePEc:hal:pseptp:hal-00813047
    DOI: 10.1257/mic.5.1.147
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    JEL classification:

    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:pseptp:hal-00813047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Caroline Bauer (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.