IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v220y2024ics0022053124000838.html
   My bibliography  Save this article

Optimal influence design in networks

Author

Listed:
  • Jeong, Daeyoung
  • Shin, Euncheol

Abstract

We examine an influence designer's optimal intervention in the presence of social learning in a network. Before learning begins, the designer alters initial opinions of agents within the network to shift their ultimate opinions to be as close as possible to the target opinions. By decomposing the influence matrix, which summarizes the learning structure, we transform the designer's problem into one with an orthogonal basis. This transformation allows us to characterize optimal interventions under complete information. We also demonstrate that even in cases where the designer has incomplete information about the network structure, the designer can still design an asymptotically optimal intervention in a large network. Finally, we provide examples and extensions, including repeated social learning and competition.

Suggested Citation

  • Jeong, Daeyoung & Shin, Euncheol, 2024. "Optimal influence design in networks," Journal of Economic Theory, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:jetheo:v:220:y:2024:i:c:s0022053124000838
    DOI: 10.1016/j.jet.2024.105877
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022053124000838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jet.2024.105877?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bramoullé, Yann & Currarini, Sergio & Jackson, Matthew O. & Pin, Paolo & Rogers, Brian W., 2012. "Homophily and long-run integration in social networks," Journal of Economic Theory, Elsevier, vol. 147(5), pages 1754-1786.
    2. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.
    3. Birke, Daniel & Swann, G.M. Peter, 2010. "Network effects, network structure and consumer interaction in mobile telecommunications in Europe and Asia," Journal of Economic Behavior & Organization, Elsevier, vol. 76(2), pages 153-167, November.
    4. Venkatesh Bala & Sanjeev Goyal, 1998. "Learning from Neighbours," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 595-621.
    5. Benjamin Golub & Matthew O. Jackson, 2012. "How Homophily Affects the Speed of Learning and Best-Response Dynamics," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(3), pages 1287-1338.
    6. Abhijit Banerjee & Emily Breza & Arun G. Chandrasekhar & Markus Mobius, 2021. "Naïve Learning with Uninformed Agents," American Economic Review, American Economic Association, vol. 111(11), pages 3540-3574, November.
    7. Benjamin Golub & Matthew O. Jackson, 2010. "Naïve Learning in Social Networks and the Wisdom of Crowds," American Economic Journal: Microeconomics, American Economic Association, vol. 2(1), pages 112-149, February.
    8. Andrea Galeotti & Benjamin Golub & Sanjeev Goyal, 2020. "Targeting Interventions in Networks," Econometrica, Econometric Society, vol. 88(6), pages 2445-2471, November.
    9. Sebastiano Della Lena, 2019. "Non-Bayesian Social Learning and the Spread of Misinformation in Networks," Working Papers 2019:09, Department of Economics, University of Venice "Ca' Foscari".
    10. Shin, Euncheol, 2017. "Monopoly pricing and diffusion of social network goods," Games and Economic Behavior, Elsevier, vol. 102(C), pages 162-178.
    11. Itay P. Fainmesser & Andrea Galeotti, 2016. "Pricing Network Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(1), pages 165-198.
    12. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 909-968.
    13. Federico Echenique & Roland G. Fryer, 2007. "A Measure of Segregation Based on Social Interactions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(2), pages 441-485.
    14. Anja Lambrecht & Catherine Tucker & Caroline Wiertz, 2018. "Advertising to Early Trend Propagators: Evidence from Twitter," Marketing Science, INFORMS, vol. 37(2), pages 177-199, March.
    15. Francesca Parise & Asuman Ozdaglar, 2023. "Graphon Games: A Statistical Framework for Network Games and Interventions," Econometrica, Econometric Society, vol. 91(1), pages 191-225, January.
    16. Gale, Douglas & Kariv, Shachar, 2003. "Bayesian learning in social networks," Games and Economic Behavior, Elsevier, vol. 45(2), pages 329-346, November.
    17. Corazzini, Luca & Pavesi, Filippo & Petrovich, Beatrice & Stanca, Luca, 2012. "Influential listeners: An experiment on persuasion bias in social networks," European Economic Review, Elsevier, vol. 56(6), pages 1276-1288.
    18. Shin, Euncheol, 2021. "Social network formation and strategic interaction in large networks," Mathematical Social Sciences, Elsevier, vol. 111(C), pages 34-54.
    19. Arun G. Chandrasekhar & Horacio Larreguy & Juan Pablo Xandri, 2020. "Testing Models of Social Learning on Networks: Evidence From Two Experiments," Econometrica, Econometric Society, vol. 88(1), pages 1-32, January.
    20. Matthew O. Jackson & Brian W. Rogers, 2007. "Meeting Strangers and Friends of Friends: How Random Are Social Networks?," American Economic Review, American Economic Association, vol. 97(3), pages 890-915, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daeyoung Jeong & Tongseok Lim & Euncheol Shin, 2024. "Robust Intervention in Networks," Papers 2501.00235, arXiv.org, revised Feb 2025.
    2. Benjamin Golub, 2025. "Eigenvalues in microeconomics," Papers 2502.12309, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buechel, Berno & Klößner, Stefan & Meng, Fanyuan & Nassar, Anis, 2023. "Misinformation due to asymmetric information sharing," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    2. Isabel Melguizo, 2019. "Homophily and the Persistence of Disagreement," The Economic Journal, Royal Economic Society, vol. 129(619), pages 1400-1424.
    3. Rapanos, Theodoros, 2023. "What makes an opinion leader: Expertise vs popularity," Games and Economic Behavior, Elsevier, vol. 138(C), pages 355-372.
    4. Sebastiano Della Lena, 2019. "Non-Bayesian Social Learning and the Spread of Misinformation in Networks," Working Papers 2019:09, Department of Economics, University of Venice "Ca' Foscari".
    5. Miguel Risco, 2025. "Network effects on information acquisition by DeGroot updaters," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 79(1), pages 201-234, February.
    6. Foerster, Manuel, 2018. "Finite languages, persuasion bias, and opinion fluctuations," Journal of Economic Behavior & Organization, Elsevier, vol. 149(C), pages 46-57.
    7. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    8. Berno Buechel & Stefan Klößner & Martin Lochmüller & Heiko Rauhut, 2020. "The strength of weak leaders: an experiment on social influence and social learning in teams," Experimental Economics, Springer;Economic Science Association, vol. 23(2), pages 259-293, June.
    9. Gallo, E. & Langtry, A., 2020. "Social Networks, Confirmation Bias and Shock Elections," Cambridge Working Papers in Economics 2099, Faculty of Economics, University of Cambridge.
    10. Comola, Margherita & Rusinowska, Agnieszka & Villeval, Marie Claire, 2024. "Competing for Influence in Networks through Strategic Targeting," IZA Discussion Papers 17315, Institute of Labor Economics (IZA).
    11. Anufriev, Mikhail & Borissov, Kirill & Pakhnin, Mikhail, 2023. "Dissonance minimization and conversation in social networks," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 167-191.
    12. Edoardo Gallo & Alastair Langtry, 2020. "Social networks, confirmation bias and shock elections," Papers 2011.00520, arXiv.org.
    13. Christos Mavridis & Nikolas Tsakas, 2021. "Social Capital, Communication Channels and Opinion Formation," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(4), pages 635-678, May.
    14. Margherita Comola & Agnieszka Rusinowska & Marie Claire Villeval, 2024. "Competing for Influence in Networks Through Strategic Targeting [En compétition pour l'influence dans les réseaux grâce au ciblage stratégique]," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04706311, HAL.
    15. Syngjoo Choi & Edoardo Gallo & Shachar Kariv, 2015. "Networks in the laboratory," Cambridge Working Papers in Economics 1551, Faculty of Economics, University of Cambridge.
    16. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    17. Levy, Gilat & Razin, Ronny, 2018. "Information diffusion in networks with the Bayesian Peer Influence heuristic," Games and Economic Behavior, Elsevier, vol. 109(C), pages 262-270.
    18. Foerster, Manuel, 2019. "Dynamics of strategic information transmission in social networks," Theoretical Economics, Econometric Society, vol. 14(1), January.
    19. Arifovic, Jasmina & Eaton, B. Curtis & Walker, Graeme, 2015. "The coevolution of beliefs and networks," Journal of Economic Behavior & Organization, Elsevier, vol. 120(C), pages 46-63.
    20. Jackson, Matthew O. & Zenou, Yves, 2015. "Games on Networks," Handbook of Game Theory with Economic Applications,, Elsevier.

    More about this item

    Keywords

    Davis–Kahan sin⁡Θ theorem; Singular value decomposition; Social learning; Social networks; Wedin sin⁡Θ theorem;
    All these keywords.

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:220:y:2024:i:c:s0022053124000838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.