IDEAS home Printed from https://ideas.repec.org/p/ags/ubzefd/230416.html
   My bibliography  Save this paper

A generic model for analyzing nexus issues of households’ bioenergy use

Author

Listed:
  • Djanibekov, Utkur
  • Finger, Robert
  • Guta, Dawit Diriba
  • Varun, Gaur
  • Mirzabaev, Alisher

Abstract

Bioenergy is a major source of energy in developing countries. However, increasing demand for agricultural commodities can lead to a stronger competition for natural resources with the bioenergy production. The nexus among energy, food production and natural resource use may result in trade-offs and synergies. Accordingly, it is important to consider multidimensional aspects of bioenergy, assess the potential for bioenergy options for meeting rural households’ demand for energy, while increasing their incomes, enhancing food security and reducing potential negative effects. For addressing these interrelated issues within a single framework, we develop a generic household model that allows analyzing the ex-ante potential impacts of bioenergy use on rural households in developing countries. The model relies on dynamic programming approach and is able to evaluate the impacts of bioenergy on livelihoods of households, on environment, and on natural resource use over time. The model explicitly considers decision making among various members of household, including men, women and children. We also trace direct and spillover impacts of policy and technological changes among different socio-economic categories of households.

Suggested Citation

  • Djanibekov, Utkur & Finger, Robert & Guta, Dawit Diriba & Varun, Gaur & Mirzabaev, Alisher, 2016. "A generic model for analyzing nexus issues of households’ bioenergy use," Discussion Papers 230416, University of Bonn, Center for Development Research (ZEF).
  • Handle: RePEc:ags:ubzefd:230416
    as

    Download full text from publisher

    File URL: http://purl.umn.edu/230416
    Download Restriction: no

    References listed on IDEAS

    as
    1. Faße, Anja & Winter, Etti & Grote, Ulrike, 2014. "Bioenergy and rural development: The role of agroforestry in a Tanzanian village economy," Ecological Economics, Elsevier, vol. 106(C), pages 155-166.
    2. Heltberg, Rasmus, 2004. "Fuel switching: evidence from eight developing countries," Energy Economics, Elsevier, vol. 26(5), pages 869-887, September.
    3. Acosta-Michlik, Lilibeth & Lucht, Wolfgang & Bondeau, Alberte & Beringer, Tim, 2011. "Integrated assessment of sustainability trade-offs and pathways for global bioenergy production: Framing a novel hybrid approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2791-2809, August.
    4. Nankhuni, Flora J. & Findeis, Jill L., 2004. "Natural resource-collection work and children's schooling in Malawi," Agricultural Economics, Blackwell, vol. 31(2-3), pages 123-134, December.
    5. Pattanayak, Subhrendu K. & Sills, Erin O. & Kramer, Randall A., 2004. "Seeing the forest for the fuel," Environment and Development Economics, Cambridge University Press, vol. 9(02), pages 155-179, May.
    6. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2011. "Intermittency and the Value of Renewable Energy," NBER Working Papers 17086, National Bureau of Economic Research, Inc.
    7. Kretschmer, Bettina & Peterson, Sonja, 2010. "Integrating bioenergy into computable general equilibrium models -- A survey," Energy Economics, Elsevier, vol. 32(3), pages 673-686, May.
    8. Ignaciuk, Adriana M. & Dellink, Rob B., 2006. "Biomass and multi-product crops for agricultural and energy production--an AGE analysis," Energy Economics, Elsevier, vol. 28(3), pages 308-325, May.
    9. Bilgen, Selçuk & Keleş, Sedat & Sarıkaya, İkbal & Kaygusuz, Kamil, 2015. "A perspective for potential and technology of bioenergy in Turkey: Present case and future view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 228-239.
    10. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    11. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    12. Guta, Dawit Diriba, 2012. "Application of an almost ideal demand system (AIDS) to Ethiopian rural residential energy use: Panel data evidence," Energy Policy, Elsevier, vol. 50(C), pages 528-539.
    13. Bryngelsson, David K. & Lindgren, Kristian, 2013. "Why large-scale bioenergy production on marginal land is unfeasible: A conceptual partial equilibrium analysis," Energy Policy, Elsevier, vol. 55(C), pages 454-466.
    14. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    15. Roumasset, J., 1995. "The nature of the agricultural firm," Journal of Economic Behavior & Organization, Elsevier, vol. 26(2), pages 161-177, March.
    16. Scheurlen, Elena, 2015. "Time allocation to energy resource collection in rural Ethiopia: Gender-disaggregated household responses to changes in firewood availability:," IFPRI discussion papers 1419, International Food Policy Research Institute (IFPRI).
    17. Ezzati, Majid & Kammen, Daniel M., 2002. "Evaluating the health benefits of transitions in household energy technologies in Kenya," Energy Policy, Elsevier, vol. 30(10), pages 815-826, August.
    18. Guta, Dawit Diriba, 2014. "Effect of fuelwood scarcity and socio-economic factors on household bio-based energy use and energy substitution in rural Ethiopia," Energy Policy, Elsevier, vol. 75(C), pages 217-227.
    19. Trink, Thomas & Schmid, Christoph & Schinko, Thomas & Steininger, Karl W. & Loibnegger, Thomas & Kettner, Claudia & Pack, Alexandra & Töglhofer, Christoph, 2010. "Regional economic impacts of biomass based energy service use: A comparison across crops and technologies for East Styria, Austria," Energy Policy, Elsevier, vol. 38(10), pages 5912-5926, October.
    20. Holden, Stein & Shiferaw, Bekele & Pender, John, 2005. "Policy analysis for sustainable land management and food security in Ethiopia: a bioeconomic model with market imperfections," Research reports 140, International Food Policy Research Institute (IFPRI).
    21. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    22. Arndt, Channing & Benfica, Rui & Thurlow, James, 2011. "Gender Implications of Biofuels Expansion in Africa: The Case of Mozambique," World Development, Elsevier, vol. 39(9), pages 1649-1662, September.
    23. Mirzabaev, Alisher & Guta, Dawit & Goedecke, Jann & Gaur, Varun & Börner, Jan & Virchow, Detlef & Denich, Manfred & von Braun, Joachim, 2014. "Bioenergy, Food Security and Poverty Reduction: Mitigating tradeoffs and promoting synergies along the Water- Energy-Food Security Nexus," Working Papers 180421, University of Bonn, Center for Development Research (ZEF).
    24. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    25. Daioglou, Vassilis & van Ruijven, Bas J. & van Vuuren, Detlef P., 2012. "Model projections for household energy use in developing countries," Energy, Elsevier, vol. 37(1), pages 601-615.
    26. Howells, M. I. & Alfstad, T. & Victor, D. G. & Goldstein, G. & Remme, U., 2005. "A model of household energy services in a low-income rural African village," Energy Policy, Elsevier, vol. 33(14), pages 1833-1851, September.
    27. Elizabeth Cushion & Adrian Whiteman & Gerhard Dieterle, 2010. "Bioenergy Development : Issues and Impacts for Poverty and Natural Resource Management
      [Desarrollo de la bioenergía : efectos e impactos sobre la pobreza y la gestión de los recursos naturales]
      ," World Bank Publications, The World Bank, number 2395, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Djanibekov, Utkur & Gaur, Varun, 2016. "Assessing nexus effects of energy use in rural areas: the case of an inter- and intra-household model for Uttar Pradesh, India," Discussion Papers 244754, University of Bonn, Center for Development Research (ZEF).

    More about this item

    Keywords

    Dynamic programming; equity; gender; technological innovations; environment; trade-offs; spillovers; synergies; Agricultural and Food Policy; Consumer/Household Economics; Environmental Economics and Policy; Research and Development/Tech Change/Emerging Technologies; Research Methods/ Statistical Methods; Resource /Energy Economics and Policy; C61; D63; O13; O33; Q4; Q12;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ubzefd:230416. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/zefbnde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.